

1	Low methane concentrations in sediment along the continental slope north of
2	Siberia: Inference from pore water geochemistry
3	
4	Clint M. Miller ¹ , Gerald R. Dickens ¹ , Martin Jakobsson ² , Carina Johansson ² , Andrey
5	Koshurnikov ³ , Matt O'Regan ² , Francesco Muschitiello ² , Christian Stranne ² , Carl-Magnus Mörth ²
6	
7	A manuscript submitted to:
8	Biogeosciences
9	
10	[July 23, 2016]
11	
12	
13	¹ Department of Earth Science, Rice University, Houston, TX, USA
14	² Department of Geological Sciences, Stockholm University, Stockholm, Sweden

15 ³V.I. Il'ichev Pacific Oceanological Institute, RAS

16	Abstract: The Eastern Siberian Margin (ESM), a vast region of the Arctic, potentially holds
17	large amounts of methane in sediments as gas hydrate and free gas. Although this CH4 has
18	become a topic of discussion, primarily because of rapid regional climate change, the ESM
19	remains sparingly explored. Here we present pore water chemistry results from 32 cores taken
20	during Leg 2 of the 2014 SWERUS-C3 expedition. The cores come from depth transects across
21	the continental slope of the ESM between Wrangel Island and the New Siberian Islands. Upward
22	CH4 flux towards the seafloor, as inferred from profiles of dissolved sulfate (SO4 ²⁻), alkalinity,
23	and the δ^{13} C-dissolved inorganic Carbon (DIC), is negligible at all stations east of where the
24	Lomonosov Ridge abuts the ESM at about 143°E. In the upper eight meters of these cores,
25	downward sulfate flux never exceeds 9.2 mol/m ² -kyr, the upward alkalinity flux never exceeds
26	6.8 mol/m ² -kyr, and δ^{13} C-DIC only slowly decreases with depth (-3.6‰/m on average).
27	Additionally, dissolved H ₂ S was not detected in these cores, and nutrient and metal profiles
28	reveal that metal oxide reduction by organic carbon dominates the geochemical environment. A
29	single core on Lomonosov Ridge differs, as diffusive fluxes for SO42- and alkalinity were 13.9
30	and 11.3 mol/m ² -kyr, respectively, the $\delta^{13}C\text{-}DIC$ gradient was 5.6‰/m, and Mn^{2+} reduction
31	terminated within 1.3 m of the seafloor. These are among the first pore water results generated
32	from this vast climatically sensitive region, and they imply that significant quantities of CH4,
33	including gas hydrates, do not exist in any of our investigated depth transects spread out along
34	much of the ESM continental slope. This contradicts previous assumptions and hypothetical
35	models and discussion, which generally have assumed the presence of substantial CH4.

36 1. Introduction

37	The Arctic is especially sensitive to global climate change. Already, over the last century,
38	the region has experienced some of the fastest rates of warming on Earth (Serreze et al., 2000;
39	Peterson et al., 2002; Semiletov et al., 2004). Past and future increases in atmospheric and
40	surface water temperatures should, with time, lead to substantial warming of intermediate to
41	deep waters (Dmitrenko et al., 2008; Spielhagen et al., 2011), as well as sediment beneath the
42	seafloor (Reagan and Moridis, 2009; Phrampus et al., 2014). The latter is both fascinating and
43	worrisome, because pore space within the upper few hundreds of meters of sediment along many
44	continental slopes can contain large amounts of temperature-sensitive methane (CH4) in gas
45	hydrates, free gas, and dissolved gas (Kvenvolden, 1993 and 2001; Beaudoin et al., 2014).
46	Consequently, numerous papers have discussed the potential impact of future warming upon CH4
47	within slopes of the Arctic Ocean (Paull et al., 1991; Archer, 2007; Reagan and Moridis, 2008;
48	McGuire et al., 2009; Biastoch et al., 2011; Elliott et al., 2011; Ferré et al., 2012; Giustiniani et
49	al., 2013; Thatcher et al., 2013; Stranne et al., 2016).
50	Globally, the distribution and total amount of CH4 in sediment along continental slopes
51	remains poorly constrained (Beaudoin et al., 2014). This is particularly true for the Arctic Ocean,
52	because ice cover makes accessibility to many regions difficult. Nonetheless, numerous papers
53	have inferred enormous quantities of gas hydrate surrounding the Arctic (Kvenvolden and
54	Grantz, 1990; Max and Lowrie, 1993; Buffett and Archer, 2004; Klauda and Sandler, 2005; Max
55	and Johnson, 2012; Wallmann et al., 2012; Piñero et al., 2013; Figure 1). In some sectors,
56	compelling evidence exists for abundant sedimentary CH4 and gas hydrate. Bottom simulating
57	reflectors (BSRs) on seismic profiles generally mark the transition between overlying gas
58	hydrate and underlying free gas (Holbrook et al., 1996; Pecher et al., 2001), and thereby imply

59 high quantities of CH ₄ in pore space (Dickens et al., 1997; Pecher et al., 2001). Such BSR

- 60 been documented along the North Slope of Alaska (Collett, 2002; Collett et al., 2010), within the
- Beaufort Sea (Grantz et al., 1976; Grantz et al., 1982; Weaver and Stewart, 1982; Hart et al.,
- 62 2011; Phrampus et al., 2014), around Canadian Arctic Islands (Judge, 1982; Hyndman and
- Dallimore, 2001; Majorowicz and Osadetz, 2001; Yamamoto and Dallimore, 2008), adjacent to
- 64 Svalbard (Eiken and Hinz, 1993; Posewang and Mienert, 1999; Vanneste et al., 2005; Hustoft et
- al., 2009; Petersen et al., 2010), and within the Barents Sea (Andreassen et al. 1990; Løvø et al.,
- 1990; Laberg and Andreassen, 1996; Laberg et al., 1998; Chand et al., 2008; Ostanin et al.,
- 67 2013). Furthermore, Lorenson and Kvenvolden (1995) observed high CH₄ concentrations in
- shelf waters of the Beaufort Sea and Shakhova (2010a, 2010b) have documented ample evidence
- 69 for methane escape to the water column on the East Siberian Margin (ESM). It generally has
- 70 been assumed that sediment on the adjacent ESM slope contains copious CH₄ and gas hydrate
- 71 (Figure 1), although no scientific expedition has investigated the hypothesis.

72 Regional assessments for the presence of abundant CH₄ in marine sediment can be acquired through two general approaches. The first includes geophysical applications, primarily seismic 73 74 reflection profiling and the recognition of BSRs (MacKay et al., 1994; Carcione and Tinivella, 2000; Haacke et al., 2008), which are a common, but not ubiquitous feature, of hydrate bearing 75 76 sediments. The second utilizes chemical analyses of pore waters obtained from short sediment 77 cores (Borowski et el., 1996; Borowski et al., 1999; Kastner et al., 2008b; Dickens and Snyder 2009). In marine sediments with abundant CH4, a general and important process occurs near the 78 seafloor, typically within the upper 30 m. Upward migrating methane, either through advection 79 80 or diffusion, reacts with downward diffusing sulfate (SO_4^{2-}) :

81 ${}^{12}CH_4 + SO_4^{2-} \rightarrow HS^- + H^{12}CO_3^- + H_2O$ (1)

82	where the superscript ¹² C denotes that methane is depleted in ¹³ C. This microbially mediated
83	reaction (Barnes and Goldberg, 1976; Reeburgh, 1976; Devol and Ahmed, 1981; Boetius et al.,
84	2000), commonly called anaerobic oxidation of methane (AOM), leads to characteristic pore
85	water chemistry profiles, including a clearly recognizable sulfate methane transition (SMT;
86	Figure 2). The depth of the SMT inversely relates to the flux of CH4 (Dickens, 2001; Bhatnagar,
87	2011). Where CH4 to the seafloor is high, the SMT is located at shallow depth. Along the
88	continental shelf and slope of the Beaufort Sea, where seismic profiles indicate gas hydrate,
89	Coffin et al. (2008, 2013) predictably have documented SMTs in shallow sediment.
90	The joint Swedish, Russian, U.S. Arctic Ocean Investigation of Climate-Cryosphere-
91	Carbon interaction (SWERUS-C3) project was initiated to investigate spatial changes in carbon
92	cycling across the ESM. A central theme of this project was to constrain the amount, distribution,
93	and fluxes of CH ₄ , and included a two-leg expedition in the boreal summer of 2014 using the
94	Swedish icebreaker IB Oden. Efforts of Leg 2 (8/21-10/3) included retrieval of 60
95	piston/gravity/multi cores of which six piston, seven gravity, and 17 multicores spanning the
96	continental slope of the ESM are studied here (Figure 3). A total of 446 pore water samples were
97	collected from these cores to document changes in chemistry associated with expected SMTs.
98	Here we present and discuss analytical results of these samples. Surprisingly, pore water profiles
99	strongly indicate that, contrary to general inferences, very little CH4 exists in shallow sediment
100	along the continental slope north of Siberia, which may preclude the presence of gas hydrate.
101	
102	2. Background

103 2.1 East Siberian Margin Geology

104	Extensive continental shelves and their associated slopes nearly enclose the central Arctic
105	Ocean (Figure 1). Although it represents only 2.6% of the world's ocean by area (Jakobsson,
106	2002), the central Arctic Ocean receives approximately 10% of the global freshwater input
107	(Stein, 2008) as well as corresponding massive discharge of terrigenous material (>249 Mt/yr;
108	Holmes et al., 2002). Only Fram Strait allows deep-water flow to and from the Arctic Ocean.
109	This strait, located between Greenland and Svalbard (Figure 1), has today a sill depth of about
110	2540 m (Jakobsson et al., 2003). It opened from early to middle Miocene times (Jakobsson et al.,
111	2007; Engen et al., 2008; Hustoft et al., 2009). Prior to this, the central Arctic Ocean only
112	connect to the world oceans through shallow seaways (e.g., Turgay Straight), and deep waters
113	may have been anoxic for long intervals of the Cretaceous and Paleogene (Clark, 1988; O'Regan
114	et al., 2011). Sediments with very high total organic carbon (TOC) accumulated on Lomonosov
115	Ridge during the middle Eocene (Stein et al., 2006), and on Alpha Ridge during the late
116	Cretaceous (Jenkyns et al., 2004).
117	The ESM is here defined to comprise the margin of the East Siberian Sea, which stretches
118	between Wrangel Island to the east and the New Siberian Islands to the west (Figure 3). We
119	include the adjacent continental slope in the ESM. This stretch of continental shelf is the widest
120	in the world, extending 1500 km north from the coast. The huge swath laying in water depths
121	less than 100 m (~987 x 10 ³ km ² ; Jakobsson, 2002) was for the most part, aerially exposed
122	during glacial periods, resulting in extensive formation of submarine permafrost (Judge, 1982;
123	Weaver and Stewart, 1982; Løvø et al., 1990; Collett et al., 2010). The expansive shelf contrasts
124	with the relative narrow continental slope, which intersects two ridge systems, Mendeleev Ridge
125	to the east and Lomonosov Ridge to the west (Jakobsson et al., 2008). Bounded by these two
125	to the east and Lomonosov Ridge to the west (Jakobsson et al., 2008). Bounded by these two

ridge systems, the steep ESM slope leads into the gently sloping Chukchi, Arlis, and Wrangel

- 127 perched continental rises (Jakobsson et al., 2003).
- 128

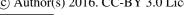
129 2.2 Regional Oceanography

Bottom waters impinging the slope of the ESM can generally be divided into three masses: 130 the Pacific Halocline (~50-200m), the Atlantic Layer (~200-800m), and Canada Basin Bottom 131 Water (>800m; Timokhov, 1994; Rudels et al., 2000). The Pacific Halocline is a cold (-1.5-0°C), 132 low salinity (32-33.5 psu) water mass that serves as a boundary (and heat sink) between sea ice 133 (above) and Atlantic Layer water (below) (Aagaard, 1981; Aagaard and Carmack, 1989). The 134 135 underlying Atlantic Layer is warmer (>0°C) but more saline (33.5-34.5 psu; Rudels et al., 2000). The Atlantic Layer water originates from water arriving to the ESM region partly through Fram 136 Strait via the West Spitsbergen Current and partly over the Barents Sea through St. Anna 137 Trough. The inflow from the Atlantic has been observed to vary over time, specifically striking 138 139 are observations of warm pulses influencing the core temperature of the Atlantic Layer in the central Arctic Ocean on decadal time scales (Dmitrenko et al., 2009; Woodgate et al., 2001). 140 141 Canada Basin Bottom Water is colder (~-0.5°C) and relatively saline (~34.9 psu), with a residence time exceeding 300 years (Stein, 2008). The upper halocline shields the lower warmer 142 waters, which may promote sea ice formation (Aagaard and Carmack, 1989). The aspect 143 144 motivating our study is that climate warming could increase bottom water temperatures on the shelf slope, in the sensitive feather edge of hydrate stability (300-450 m, Stranne et al., 2016), 145 which would decrease the extent of the gas hydrate stability zone (GHSZ) and possibly release 146 147 CH₄ to the water column and atmosphere.

148

149 2.3 Current Speculation on Gas Hydrates in the Arctic

150	Even during summer months over the last decade, 2-3 m of sea ice covers much of the
151	Arctic Ocean adjacent to Siberia (Stroeve et al., 2012). This necessitates the use of large ice
152	breaking vessels to explore the region. Consequently, limited information exists regarding
153	continental slopes of the ESM. Four icebreaker expeditions, the 1995 Polarstern Expedition
154	ARK-XI/1 [Rachor, 1995], the 1996 Arctic Ocean Expedition ARK-XII/1 [Augstein et al.,
155	1997], the 2008 Polarstern Expedition ARK-XXIII/3 [Jokat, 2010], and the 2009 Russian-
156	American RUSALCA Expedition [Bakhmutov et al., 2009] have retrieved geophysical data and
157	sediment on or adjacent to the ESM slope.
158	So far, no drilling has occurred on the ESM slope. However, the 2004 Arctic Coring
159	Expedition (ACEX; Backman et al., 2009) drilled and cored the central Lomonosov Ridge
160	(Figure 1). There are also land based studies (Gualtier et al., 2005; Sher et al., 2005; Andreev et
161	al., 2009), and some public Oil and Gas Exploration materials which provide indirect data on the
162	ESM (Hovland and Svensen, 2006).
163	Despite the paucity of ground-truth data, as shown by maps of conjectured Arctic gas
164	hydrate distribution (Figure 1), many researchers have predicted widespread and abundant CH4,
165	including gas hydrate, along the ESM continental slope. This is a logical inference that arose for
166	two main reasons. First, particulate organic carbon (POC) provides the ultimate source of CH4 in
167	marine sediments (Kvenvolden and Grantz, 1990), and Arctic slopes may contain high POC
168	contents, which accumulated prior to the opening of the Fram Strait (Jokat and Ickrath, 2015), or
169	along with terrigenous material during interglacial intervals of the Quaternary (Danyushevskaya
170	et al., 1980; Clark, 1988; Darby, 1989; Moran et al., 2006; Archer, 2015). Certainly, organic rich
171	Eccene sediments have been documented on other Arctic margins and in the ACEX cores on



172

173 Moreover, during Pleistocene glacial periods, extensive portions of the adjacent continental shelf 174 were subaerially exposed tundra (Gusev et al., 2009; Jakobsson et al., 2014), and the locus of sediment deposition moved toward the slope (Alekseev, 1997; Naidu et al., 2000; Niessen et al., 175 2013). Organic matter burial might be enhanced further by cold seafloor temperatures, which 176 should reduce bacterial degradation in shallow sediment (Darby et al., 1989; Max and Lowrie, 177 178 1993). Second, the thickness of the GHSZ depends on bottom water temperature and the geothermal gradient (Dickens, 2001), and very low bottom water temperatures along the slope 179 combined with low geothermal gradients (O'Regan et al., 2016) imply a volumetrically extensive 180 181 GHSZ (Miles, 1995; Makogon, 2010). Few environmental considerations point against the existence of gas hydrates in the ESM slopes although glacial periods dominated by relatively low 182 sea levels might have kept the sensitive shallow part of the present GHSZ depleted of hydrates 183 (Stranne et al., 2016). 184 185 2.4 Pore Water Chemistry Above Methane-Charged Sediment Sequences 186

Lomonosov Ridge (Moran et al., 2006; Backman and Moran, 2009; O'Regan et al., 2011).

Pore water chemistry profiles provide a powerful means to constrain CH₄ abundance and fluxes in marine sediment sequences (Borowski et al., 1996; Berg et al., 1998; Jørgensen et al., 2001; Torres and Kastner, 2009; Treude et al., 2014). Such profiles are generated by extracting interstitial water from sediment cores, and measuring the concentrations of dissolved species. In the absence of significant advection, depth profiles of various analytes relate to Fick's law of diffusion and chemical reactions (e.g., Berner, 1977; Froelich et al., 1979; Klump and Martens 1981; Schulz, 2000).

194 The flux (J) of a dissolved species through porous marine sediment can be calculated from 195 the concentration gradient by (Li & Gregory, 1974; Berner, 1975; Lerman, 1977):

196
$$J = -\varphi Ds \frac{\partial C}{\partial Z},$$
 (2)

where φ is porosity, D_s is the diffusivity of an ion in sediment at a specified temperature, C is 197 198 concentration, and Z is depth. Note that, as generally written, J is positive for upward fluxes and negative for downward fluxes relative to the seafloor. In many locations, φ and D_s change only 199 moderately (< 20%) in the upper few tens of meters below the seafloor. However, abundant CH₄ 200 201 in sediment necessarily leads to a large concentration gradient toward the seafloor and a major upward flux of CH₄. The consequent reaction with SO_4^{2-} via AOM (Equation 1) leads to a series 202 of flux changes in dissolved components (addition or removal), and predictable variations in 203 204 corresponding concentration profiles across a SMT (Alperin, 1988; Niewohner et al., 1998; Ussler and Paull, 2008; Dickens and Snyder, 2009; Regnier et al., 2011). 205 Typically, the SMT is a thin (<2 m) depth horizon with major inflections in both CH₄ and 206 SO_4^{2-} profiles (Figure 2). Sulfate concentrations decrease from seawater values at the seafloor to 207 zero at the SMT; by contrast, CH4 concentrations rise from zero at the SMT to elevated values at 208 depth. In regions dominated by diffusion, the depth of the SMT relates to the flux of CH4 from 209 below (Jørgensen et al., 1990; Dickens, 2001; D'Hondt et al., 2002; Hensen et al., 2003). In part, 210 this is because SO_4^{2-} concentrations at the seafloor are fixed. 211 212 Importantly, as one can infer from Equations 1 and 2, AOM affects additional species 213 dissolved in pore water (Alperin et al., 1988; Jørgensen et al., 1990; Dickens, 2001; Hensen et al., 2003; Snyder et al., 2007). Dissolved HS⁻ and HCO₃⁻ concentrations necessarily increase 214

215 across the SMT, so an inflection occurs in their concentration profiles. These two species

216

217 defined as: $Alk_T = [HCO_3^-] + 2[CO_3^{2-}] + [HS^-] + [B(OH)_4^-] + [OH^-] + [HPO_4^{2-}] + [NH_3] +$ 218 [X], 219 (3) over the pH range 6.3 to 10.3, where X refers to several minor species. However, in shallow 220 221 sediments found above almost all CH₄ charged systems, this can be expressed as: $Alk_T \approx [HCO_3^-] + [HS^-],$ (4) 222 223 Thus, with the production of HS⁻ and HCO₃⁻, an inflection in Alk_T occurs across the SMT (Luff and Wallmann 2003; Dickens and Snyder, 2009; Jørgensen and Parkes, 2010; Smith and Coffin, 224 2014; Ye et al., 2016). 225 226 Marked changes in pore water profiles of other components also typically occur across the SMT (Figure 2). Because CH₄ is greatly depleted in ¹³C (Paull et al., 2000), the conversion of 227 CH₄ carbon to HCO₃⁻ carbon (Equation 1) induces a decrease in the δ^{13} C values of dissolved 228 inorganic carbon (DIC) across the SMT (Torres et al., 2007; Holler et al., 2009; Yoshinaga et al., 229 2014). However, the magnitude of change becomes complicated because of excess HCO_3^- rising 230 from below (Snyder et al., 2007; Chatterjee et al., 2011). Dissolved Ba²⁺ concentrations 231 generally increase significantly just above the SMT. This is because solid barite (BaSO₄), a 232 ubiquitous component of marine sediment on continental slopes (Dehairs et al., 1980; Dymond et 233 al., 1992; Gingele and Dahmke, 1994), dissolves in the SO_4^{2-} -depleted pore water and dissolved 234 Ba²⁺ then diffuses back across the SMT (Dickens, 2001; Riedinger et al., 2006; Nöthen and 235 Kasten, 2011). Dissolved Ca^{2+} concentrations usually decrease across the SMT. This is due to 236 237 authigenic carbonate precipitation resulting from the production excess HCO3⁻ (Greinert et al., 2001; Luff and Wallmann 2003; Snyder et al., 2007). Importantly, though, dissolved NH4⁺ 238 11

contribute to total alkalinity (Gieskes and Rogers, 1973; Haraldsson et al., 1997), which can be

- 239 concentrations exhibit no inflection across the SMT. This is because while decomposition of
- 240 particulate organic matter generates NH4⁺, AOM does not (Borowski et al., 1996). In summary,
- 241 pore water analyses at numerous locations demonstrate that characteristic pore water profiles
- 242 delineate sites with significant CH₄, including gas hydrate, at depth (Figure 2).
- 243

244 **3. Materials and Methods**

245 3.1 The SWERUS-C3 Expedition, Leg 2

Between August 21 and October 5, 2014, Leg 2 of the SWERUS-C3 expedition sailed

247 between Barrow, Alaska and Tromsø, Norway with IB Oden. This leg included four transects

that cross the ESM continental slope (Figure 3). These transects were along Arlis Spur (TR-1),

249 north of central East Siberia (TR-2), from close to Henrietta Island to the Makarov Basin (TR-3),

and on the Amerasian side of Lomonosov Ridge (TR-4). Along each transect, scientific

251 operations involved bathymetric mapping as well as sediment coring a series of stations. One

station also was located on Lomonosov Ridge, near where this long bathymetric high intersects

the ESM. Additionally, three days were spent at Herald Trough, a canyon on the shelf of eastern

254 Siberia. Data obtained from the northern Lomonosov Ridge and Herald Canyon are not presented

in this manuscript.

An array of coring techniques were used along each transect. In total, 50 sediment cores

were collected at 34 coring stations. These included: multicore sets (22), gravity cores (23),

- piston cores (11), and kasten cores (2). The multicorer was an 8-tube corer built by Oktopus
- 259 GmbH weighing 500kg. The polycarbonate liners were 60 cm long with a 10 cm diameter. The
- 260 piston/gravity coring system was built by Stockholm University with an inner diameter of 10 cm.
- 261 Trigger weight cores also were collected during piston coring. The different coring systems

- enabled sediment and pore water collection from the seafloor to upwards of eight to nine m
- 263 below the seafloor (mbsf).

264

- 265 *3.2 Core material*
- 266 Sediment physical properties (piston and gravity cores) were analyzed shipboard using a
- 267 Geotek Multi-Sensor Core Logger (MSCL) from Stockholm University. Measurements of the
- 268 gamma-ray derived bulk density, compressional wave velocity (p-wave), and magnetic
- susceptibility were acquired at a down core resolution of one cm. Discrete samples (2-3 per
- 270 section) were collected for sediment index property measurements (bulk density, porosity, water
- 271 content and grain density). Grain density was measured using a helium displacement pycnometer
- on oven-dried samples. Porosity profiles were generated using the smoothed (3-pt) MSCL-
- 273 derived bulk density (ρ_B) and the average grain density (ρ_g) from each core, where;

274
$$\varphi = \frac{(\rho_g - \rho_b)}{(\rho_b - \rho_f)'},\tag{5}$$

and a pore fluid density ($\rho_{\rm f}$) of 1.024 g/cm³ was assumed. In cases where 2 or more distinct lithologic units existed within a core, the average grain density for each unit was used in this

- 277 calculation.
- 278 3.3 Interstitial Water Collection

Pore waters were collected using Rhizon samplers (Seeberg-Elverfeldt et al., 2005; Dickens
et al., 2007). Cores were cut into ~1.5 m long sections immediately on *Oden*'s deck, brought to
the geochemistry laboratory, and placed on precut racks. Laboratory temperature was a constant
22 °C. Sampling involved drilling holes through the core liner, inserting Rhizons into the
sediment core, and obtaining small volumes of pore water via vacuum and "microfiltration"
(Figure 4). An individual Rhizon consists of a hydrophilic membrane composed of a blend of

285	polyvinylpyrrolidine and polyether sulfone (nominal pore size of 0.12 - 0.18 μm) connected to a
286	tube. These are pushed into the sediment and, with negative pressure, the filament filters water
287	into the syringe. The Rhizons were five cm porous flat tip male luer lock (19.21.23) with 12 cm
288	tubing, purchased from Rhizosphere Research Products (www.rhizosphere.com).
289	In total, 529 pore water samples were collected in ~10 mL plastic syringes from 32 cores,
290	which ranged from 0.16 to 8.43 m in length (Table 1). Rhizons in gravity and piston cores
291	typically were spaced every 20 to 30 cm, although occasionally at five cm increments. Of the
292	total, 456 samples obtained ~10 mL or more of pore water. Rhizon sampling from multicores
293	took an average of 1.24 hr per sample, and ranged from 0.08 to 4.01 hr; for gravity and piston
294	cores, the average sampling time was 11.28 hr, and ranged from 1.33 to 23.08 hr. Tabulated
295	Rhizon flow rates averaged 12.72 mL/hr for multicores and 1.29 mL/hr for piston and gravity
296	cores (Table 2). After considering the time to recover cores from the seafloor, the total time from
297	core retrieval through sample collection averaged 1.95 hr for multicores and 14.65 hr for piston
298	and gravity cores.
299	We highlight the above sampling times due to concerns about the fidelity of chemical
300	analyses using Rhizon samplers in recent literature (Schrum et al., 2012; Miller et al., 2014).
301	Since initial implementation of Rhizons in marine sediment cores (Seeberg-Elverfeldt et al.,
302	2005; Dickens et al., 2007), they increasingly have been used to collect pore waters (e.g.,
303	Pohlman et al., 2008; Gao et al., 2010; Riedinger et al., 2014). This is for multiple reasons,
304	including the capability for high-resolution sampling, the ease of sampling, and the minimal
305	destruction of surrounding sediment (Dickens et al., 2007). However, concerns about using

- $\label{eq:solution} 306 \qquad \text{Rhizon samplers include CO}_2 \ \text{degassing during extraction} \ (\text{Schrum et al., 2012}) \ \text{or changes to} \\$
- 307 pore water composition between core retrieval and water extraction. In the latter case, alteration

308 of pore water chemistry may occur through reactions induced by elevated temperature, reduced

309 pressure, evaporation, microbial activity or other processes.

- 310 In order to constrain possible changes in pore water chemistry over time, two experiments
- 311 were performed onboard *IB Oden*. First, the temperature and pH of a piston core from Station 33
- 312 were continuously monitored at five discrete intervals over 24 hours. Probes, inserted into the

sediment by drilling holes in the core liner, recorded data at five minute intervals (Figure 5).

Second, for 46 samples (Table 4), after collection of the first 10 mL of pore water, the syringe

315 was removed, and additional pore water was collected in a second (or third) syringe.

316 While in the shipboard laboratory, Rhizon samples were divided into six aliquots when

sufficient water was available. This sample splitting led to 2465 aliquots of pore water in total,

318 which then could be examined for different species and at different laboratories. Aliquots 1, 3,

and 6 (below) were collected for all samples.

320

321 3.4 Interstitial Water Analyses

322 The first aliquot was used to measure total alkalinity using a Mettler Toledo titrator

onboard IB Oden. Immediately after collection, 2 mL of pore water were diluted to 40 mL with

milli-Q water and autotitrated with 0.005M HCl from the original pH to a pH of 5.4. A total of

325 15 spiked samples and 8 duplicates were analyzed onboard for quality control. Spiked samples

were created by pipetting certified reference material (Batch 135; CRM) into milli-Q water.

327 Results for spiked samples and duplicates are reported in Table 3.

The second aliquot was used to measure the δ^{13} C composition of DIC (δ^{13} C_{DIC}). Septum sealed glass vials prepared with 100µL of 85% phosphoric acid and flushed with helium were prepared before the expedition. The analysis required approximately 40 µg of DIC in each pore

331	water sample. Onboard alkalinity measurements were used to estimate the correct volume, and
332	this amount was injected into the vials. Samples were sealed in boxes and refrigerated for the
333	remainder of the cruise. Four field duplicates, two seawater standards, and a field blank were
334	collected, stored, and analyzed with the samples. The $\delta^{13}C_{\text{DIC}}$ analyses were performed on a
335	Gasbench II coupled to a MAT 253 mass spectrometer (both Thermo Scientific) at Stockholm
336	University. The carbon isotope composition of DIC is reported in conventional delta notation
337	relative to Vienna PeeDee Belemnite (VPDB). Results for field duplicates and standards are
338	reported in Table 2. Standard deviation for the analyses of $\delta^{13}C_{DIC}$ was less than 0.1 per mille.
339	The results for seawater standards collected onboard are given in Table 3.
340	The third aliquot was used to measure dissolved sulfur and metals. Approximately 3 mL of
341	pore water were placed into acid washed cryovials. Samples were acid preserved with 10 μ L
342	ultrapure HNO ³ . Additionally, 11 blind field duplicates and 2 field blanks were collected and
343	processed in the same manner. Concentrations of Ba, Ca, Fe, Mg, Mn, S, and Sr were determined
344	on an Agilent Vista Pro Inductively Coupled Atomic Emission Spectrometer (ICP-AES) housed
345	in the geochemistry facilities at Rice University. Known standard solutions and pore fluid
346	samples were diluted 1:20 with 18-M Ω water. Scandium was added to both standards and
347	samples to correct for instrumental drift (emission line 361.383 nm). Wavelengths used for
348	elemental analysis followed those indicated by Murray et al. (2000). Following initial analysis,
349	an additional dilution, 1:80 with 18-M Ω water, was analyzed for Ca, Mg, and S. After every 10
350	analyses, an International Association of Physical Sciences (IAPSO) standard seawater spiked
351	sample and a blank were examined for quality control. Relative standard deviations (RSD) from
352	stock solutions are reported in Table 3.

353	The fourth aliquot was used to measure dissolved ammonia (NH4 ⁺). This was carried out
354	shipboard via a colorimetric method similar to that presented by Gieskes et al. (1991). Set
355	volumes (100 μ L) of pore water were pipetted into 1 cm ³ plastic cuvettes and diluted with 900 μ L
356	of milli-Q water. Two reagents (100 μL of A and 100 μL of B) were then pipetted into the
357	cuvettes. Reagent A was prepared by adding 35 g of trisodium citrate (Na ₃ C ₆ H ₅ O ₇), 2.7 g of
358	phenol (C6H5OH), and 0.06 g of sodium nitroprusside (Na2[Fe(CN)5NO]) to 100 mL of milli-Q
359	water. Reagent B was prepared by dissolving 1.36 g of sodium hydroxide in 100 mL of milli-Q
360	water and adding 3 mL sodium hypochlorite (NaClO) solution. After the reagents were added,
361	solutions were mixed, and allowed to react for at least six but not more than 24 hours. Solutions
362	turned various shades of blue, which to relate to $\rm NH_4^+$ concentration, and which were measured
363	by absorbance at 630 nm on a Hitachi U-1100 spectrophotometer. Five point calibration curves
364	(0 to 200 μ M) were measured before each sample set and corrected using VKI standard (QC
365	RW1; <u>www.eurofins.dk</u> ; Table 3).

The fifth aliquot was used to measure dissolved phosphate (PO_4^{3-}). The method of 366 preparation also followed that given by Gieskes et al. (1991). The remainder of the pore water 367 (generally between 1 and 3mL) was added to milli-Q water to a sum of 10 mL. Two reagents 368 369 were then added to the solution to react with phosphate (200 µL of A and B). Reagent A was prepared by first making three solutions: eight grams of ammonium molybdate ((NH₄)₂MoO₄) 370 were added to 80 mL of milli-Q water, 50 mL of concentrated sulfuric acid were added to 150 371 mL of milli-Q water, and 0.01 g of potassium antimonyl tartrate hydrate (C8H4K2O12Sb2 • 372 373 XH₂O) were added to 10 mL of milli-Q water. Then, 30 mL of the ammonium molybdate solution were added to 90 mL of the sulfuric acid solution, and five mL potassium antimonyl 374 375 tartrate solution was slowly added dropwise. Reagent B was created by dissolving 10 g of

376

377	added, mixed, and allowed to react for 10 but not more than 30 minutes. Solutions turned various
378	shades of blue, which to relate to PO_4^{3-} concentration, and which were then measured at an
379	absorbance of 880 nm on the above spectrophotometer. Five point calibration curves (0 to 50
380	μ M) were measured before each sample set and corrected using VKI standard (QC RW1;
381	www.eurofins.dk; Table 3).
382	In cases of excess sample, an additional aliquot was collected to test for dissolved hydrogen
383	sulfide. Approximately 2 mL of pore water was placed into a cryovial, and 200 μ L of a 2.5% Zn-
383 384	sulfide. Approximately 2 mL of pore water was placed into a cryovial, and 200 μ L of a 2.5% Zn-acetate (Zn(C ₂ H ₃ O ₂) ₂) solution was added. Given the extremely low solubility of ZnS, a white

ascorbic acid in 50 mL of milli-Q water. After the samples were prepared, reagent A and B were

387

388 4. Results

389 4.1 Generalities

With the large number of pore water measurements (Table 1) we begin with some 390 generalities regarding the results. We plot pore water concentration profiles along each transect 391 392 collectively (Figures 6 - 10), irrespective of coring device or water depth, although clear variance in pore water chemistry exists between stations for some dissolved species (e.g., Fe). 393 Most species display "smooth" concentration profiles with respect to sediment depth 394 (Figures 6 - 10). That is, concentrations of successive samples do not display a high degree of 395 396 scatter. This is expected for pore water profiles in sediment where diffusion dominates (Froelich et al., 1979; Klump and Martens 1981; Schulz, 2000). However, as best seen for dissolved 397 species whose concentrations do not appreciably change over depth (e.g., Ba²⁺ and Ca²⁺) scatter 398

- exists beyond that predicted from analytical precision. This scatter has a weak positive
- 400 correlation with increased sampling time, which can be shown by comparing time to a deviation
- 401 in concentration (Figure 11). The latter is defined by:

$$\Delta X = X_{Measured} - X_{Predicted} , \qquad (6)$$

403 where X is the species of interest, and $X_{Predicted}$ is the concentration of X determined from the

404 linear best fit line of a concentration profile.

405 A method detection limit (MDL) for each species can be determined by the following 406 equation:

407
$$MDL = \left(\frac{C_{High} - C_{Low}}{I_{High} - I_{Low}}\right) 3\sigma , \qquad (7)$$

where C = concentration and I = intensity (counts per second on the ICP-AES). The MDLs were as follows: Ba = 0.01 μ M, Ca = 0.08 μ M, Fe = 5.9 μ M, Mg = 0.22 μ M, Mn = 0.24 μ M, S = 1.2 μ M, Sr = 0.01 μ M. On all plots, for reference, we place dashed lines for values of IAPSO seawater standard (Alkalinity = 2.33 mM, Ba = 0.00 mM, Ca = 10.28 mM, Fe = 0.00 mM, Mg = 53.06 mM, Mn = 0.00 mM, S = 28.19 mM, Sr = 0.09 mM, NH₄ = 0.00 mM, HPO₄ = 0.00 mM). Pore water profiles generated from ACEX cores (Backman et al., 2009) also are shown for comparison.

415

416 *4.2 Porosity and Sampling Time*

417 Measured porosity values of piston and gravity cores generally decrease with depth from
418 80% or greater at the mudline to around 60% at eight mbsf (Figure 12a). Over the first 0.1 m,

419 porosity decreases steeply, by an average of 6.8%. From 0.2 to 8.0 m, porosity decreases much

- 420 more gradually, by an average of 1.3% every meter. The 1σ deviation in porosity between all
- 421 stations typically ranges between 6 and 10% at any given depth.

422

423	(Table 2) averaged 12.72 mL/hr while gravity and piston cores averaged 1.29 mL/hr. This flow
424	rate generally decreased with depth. Across all data from all cores, a first-order relationship
425	between depth (z) and extraction rate (ER) can be expressed as $ER = 4.4911z^{-1.512}$ ($R^2 = 0.789$;
426	Figure 12b). The extraction rate correlated with depth more closely than with porosity (Figure
427	12c). The porosity (ϕ)-extraction rate relationship, expressed as ER = 21.718(ϕ) ^{8.161} had an R ² =
428	0.631.
429	
430	4.3 Physiochemical Conditions During Rhizon Sampling
431	For the five sections from Station 33 examined for changes in physiochemical conditions,
432	temperature rose from \sim 2°C upon initial measurement to between 16.9 and 18.4 °C within 24
433	hours (Figure 5). In general, the shallow sections increased faster than the deeper sections.
434	Initial pH decreased with depth ($0.05 \text{ mbsf} = 7.79 \text{ units}$, $1.86 \text{ mbsf} = 7.71 \text{ units}$, $4.80 \text{ mbsf} = 7.39$
435	units, and $6.30 \text{ mbsf} = 7.19 \text{ units}$). Over the same time interval, pH decreased significantly in all
436	core sections, by an average of 0.25 units, with a range between 0.18 and 0.38 units (Figure 5).
437	Note, however, that pH dropped by 0.3 units at ~20 hrs in one of the pH profiles (Section 2, 1.86
438	mbsf). This may be due to a temporary crack in the sediment core created by removing pore
439	water through rhizon sampling, although no crack was observed when the core section was split.
440	In total, 46 of the 68 Rhizon sampling depths at Station 28 enabled collection of multiple
441	water samples (Table 4). This included "second generation" samples, where beyond the first ~ 10
442	mL, another 1 to 10 mL were obtained, as well as three "third generation" samples, where
443	beyond the first ~20 mL, another 1 to 10 mL were obtained. The sample depths which did not
444	yield enough pore water for a "second generation" tended to be deeper (16 of 22 were in the

Sampling time inversely relates to porosity (Table 2). Multicore rhizon extraction rates

- deepest section). Relative to the initial 10mL of pore water, alkalinity increased in 43 of the
 second generation samples, and in all three of the third generation samples by an average 0.15
 mM (4.1% increase). Interestingly, no statistically significant changes in concentrations of
- 448 phosphate, ammonia or any dissolved metal were observed.
- 449
- 450 4.4 Alkalinity and $\delta^{13}C$

Alkalinity concentrations increase with depth in all cores (**Figures 6 - 10**). Moreover, in most cases, the rise is nearly linear. Across all stations on the four transects, alkalinity increases by an average of 0.51 mM/m, although variance exists between mean gradients for each transect (Tr1 = 0.46 mM/m, Tr2 = 0.34 mM/m, Tr3 = 0.91 mM/m, and Tr4 = 0.44 mM/m) and by station along each transect. Overall, the rise in alkalinity at these 15 stations ranges from 0.30 to 0.98 mM/m. The Lomonosov Ridge station differs (**Figure 10**), as alkalinity increases much faster with depth (1.86 mM/m).

- Concave-down δ^{13} C-DIC profiles characterize pore waters at all stations (Figures 6 10). 458 The decrease in δ^{13} C-DIC changes most rapidly near the seafloor. Across all stations along the 459 four transects, pore water δ^{13} C-DIC values decrease from near zero close to the mudline at an 460 average of -3.6 ‰/m. Again, significant variance in mean gradients occurs according to transect 461 (Tr1 = -3.3 %/m, Tr2 = -3.0 %/m, and Tr3 = -4.7 %/m) and according to station on each 462 463 transect. The range in average δ^{13} C-DIC value gradients across all stations is -2.7 to -4.9 ‰/m. As with alkalinity, the δ^{13} C-DIC profile at the Lomonosov Ridge station differs, with values 464 decreasing by 5.6 ‰/m, such that 8 mbsf, δ^{13} C-DIC approaches -45 ‰. In summary, a basic 465 relationship exists between higher alkalinity and lower δ^{13} C-DIC across all stations. 466
- 467

468 *4.5 Sulfur and sulfate*

469	No sulfide was detected by smell or with addition of Zn-acetate in any pore water sample.
470	Molar concentrations of total dissolved sulfur should, therefore, represent those of dissolved
471	SO4 ²⁻ . Along the four transects, dissolved S concentrations decrease with depth at all stations
472	(Figures $6 - 9$). The sulfur concentration in the shallowest sample varied from 27.29 to 30.58
473	mM and averaged 28.70 mM. From these "seafloor" values, concentrations decrease by an
474	average 0.69 mM/m, again with variance according to transect (Tr1 = -0.58 mM/m, Tr2 = -0.57
475	mM/m, $Tr3 = -1.09$ mM/m; and $Tr4 = -0.60$ mM/m) and station along each transect. The S
476	gradients across all stations along the ESM slope range from -0.41 to -1.13 mM/m. Total
477	dissolved S at the Lomonosov Ridge station decreased faster than at any of the other stations (-
478	1.92 mM/m). Importantly, decreases in dissolved S are similar in magnitude to increases in
479	alkalinity at each station. Indeed, the molar ratio of alkalinity increase to sulfate decrease (-
480	Δ Alkalinity/ Δ S) is 0.98 (Figure 13a).
481	
482	4.6 "Nutrients": Phosphate and Ammonia
483	Often, in discussions of pore water chemistry, dissolved phosphate (HPO42-) and ammonia
484	$(\mathrm{NH_{4}^{+}})$ are classified as "nutrients", although the connotation derives from the fact that these two
485	species arise through the oxidation of POM in the sediment (Berner, 1977). The C:N:P molar
486	ratio, known as the "Redfield Ratio", of initial POM is approximately 106:16:1 (Redfield, 1958;
487	Takahashi, 1985). Therefore, assuming mass balance, dissolved "nutrients" are used as reference

- 488 for the amount of POC consumed through microbial oxidation. Importantly, concentrations of
- 489 HPO_4^{2-} and NH_4^+ are near or below detection in samples immediately below the seafloor
- 490 (Figures 6 -10).

491	With depth, concentrations of dissolved HPO4 ²⁻ typically increase, reach a subsurface
492	maximum, and then decrease (Figure $6 - 10$). With available data, a more pronounced maximum
493	generally occurs at stations with relatively shallow water depth. For example, and within the
494	spatial resolution of samples, consider the peak in HPO4 ²⁻ concentrations at four stations. At the
495	two shallow stations, S12 (384 m) and S22 (367 m) the HPO4 $^{2\text{-}}$ maxima are, 73 μM (1.91 m) and
496	18 μ M (0.66 m), respectively at the two deeper stations, S17 (977 m) and S14 (733 m), the
497	$HPO_4{}^{2\text{-}}$ maxima are only 6.7 μM (1.76 m) and 7.1 μM (2.33 m) respectively. The station on
498	Lomonosov Ridge (S31) has a high in HPO4 ²⁻ concentration of 76 μ M at 1.02 m below the
499	mudline. In general, stations with more pronounced HPO42- maxima also have greater increases
500	in alkalinity with depth.
501	By contrast, dissolved NH4 ⁺ profiles rise almost linearly with depth, but with slight
502	concave-down curvature. Similar to dissolved HPO4 ²⁻ profiles, NH4 ⁺ concentrations increase
503	with depth fastest at stations with shallower water depth (although we note an exception for Tr2).
504	Across stations along the four transects, pore water NH4 ⁺ concentrations increase with depth on
505	average by 38.69 $\mu M/m,$ with a range from 11.28 to 76.08 $\mu M/m.$ Along each transect, the
506	average NH ₄ ⁺ gradients are as follows: Tr1 = 43.02 μ M/m, Tr2 = 17.38 μ M/m, Tr3 = 68.97
507	μ M/m, and Tr4 = 29.04 μ M/m.
508	The HPO4 ²⁻ , NH4 ⁺ , and alkalinity profiles relate to one another statistically, although with
509	distinction. The concentration relationship of alkalinity and ammonium ion can be expressed by
510	a second order polynomial ($[NH_4^+] = -0.003[Alk]^2 + 0.105[Alk] - 0.253$; Figure 13b) with an
511	average molar ratio (Δ Alk/ Δ NH ₄ ⁺) of 14.69. All stations have a C:N ratio in pore waters more
512	than the Redfield Ratio of 6.625 (Figure 14). The molar ratio of alkalinity and phosphate ion
513	$(\Delta Alk/\Delta HPO_4^{2-})$ averages 55.72 for all stations. This means that all stations have an average C:P

- ratio less than 106. Overall, a consistent pattern emerges between changes in NH_{4^+} , and
- alkalinity, but one that deviates significantly from Redfield ratio. Interestingly, the C:N ratio
- appears to vary significantly across transects. This ratio increases from Tr1 (8.61-11.22), Tr3
- 517 (12.5-18.14), Tr2 (17.53-18.55), to the Lomonosov Ridge station (22.62). The C:P ratio followed
- a similar pattern, generally increasing from east to west: Tr1 (16.57-74.70), Tr2 (26.32-92.04),
- 519 Tr3 (26.29-86.34), and Tr4 (52.18-124.35).
- 520
- 521 *4.7 Metals*

At most stations, dissolved Ba concentrations increase nonlinearly from values at or below detection limit (0.01 μ M) near the seafloor to generally constant values (0.6 – 0.7 μ M) within 0.8 m below the seafloor. However, at several stations, dissolved Ba concentrations remained at or below the detection limit for all samples.

Overall, dissolved Ca, Mg, and Sr concentrations decrease slightly with depth (**Figures 6** -**10**). Across stations along the four transects, Ca concentrations drop on average between -0.094 and -0.122 mM/m (Tr1), between -0.092 and -0.093 mM/m (Tr2), between -0.092 and -0.101 (Tr3), and -0.075 mM/m (Tr4). Magnesium concentrations also drop, the average change being between -0.430 and -0.481 mM/m (Tr1), between -0.274 and -1.319 (Tr2), between -0.863 and -0.942 mM/m (Tr3), and -0.467 mM/m (Tr4). Strontium concentrations decrease by an average amount of 0.3 μ M/m, considering all stations along the four transect stations (Tr1 = 0.5 μ M/m,

533 Tr2 = 0.3 μ M/m, Tr3 = 0.1 μ M/m, and Tr4 = 0.1 μ M/m). The station on Lomonosov Ridge again

- stands apart. At this location, the decreases in dissolved Ca, Mg, and Sr are 0.27 mM/m, 1.24
- 535 mM/m, and 0.50 μ M/m, respectively.

536	The profiles of dissolved Mn and Fe are spatially complicated. Generally, profiles show a
537	broad rise in concentration and subsequent fall at deeper depth. Some stations have a maxima in
538	dissolved Mn (Stations S12 (135 μM at 5 m), S28 (66 μM at 3.1 m), and Lomonosov Ridge (86
539	μ M at 1.3 m), where concentrations decrease below. At other stations, Mn concentrations are still
540	increasing at the lowest depth. Iron concentrations are generally below the detection limit at or
541	near the mudline, and begin increasing around $2.5 - 3.5$ m reaching concentrations upward of 20
542	μΜ.
543	
544	5. Discussion
545	5.1 Flow Rates from Rhizons
546	Pore water flow rate drops quasi-exponentially with depth (Figure 12b), similar to what
547	was documented on ACEX (Dickens, 2007). This probably results from the decrease in porosity
548	(and presumably permeability) with depth (Figure 12c). Given that individual Rhizons have
549	similar vacuum to pull the water, a decrease in porosity and permeability means a slower flow
550	(Domenico and Schwartz, 1998).
551	
552	5.2 Fidelity of Rhizon Pore Water Measurements
553	Researchers have employed multiple methods to extract pore waters from marine
554	sediments over the last few decades (Seeberg-Elverfeldt et al., 2005). As the rhizon technique
555	remains relatively novel, the accuracy and precision of analyses obtained through this approach
556	warrant consideration before discussing the results. This issue arises particularly because of the
557	two aforementioned papers questioning the fidelity of pore water records generated through
558	rhizon sampling.

559	Schrum et al. (2012) compared dissolved species collected by whole round squeezing and
560	rhizons. They observed very subtle but consistent (0.06 to 0.8 mM) offsets to lower alkalinity in
561	Rhizon samples, and hypothesized that this reflected CO ₂ degassing during extraction. For
562	example, the release of gas during filtering under vacuum conditions might increase, leading to
563	precipitation of CaCO ₃ , and ultimately a drop in alkalinity. They noted, though, that rhizons
564	seemed to provide accurate measurements for nutrients and metals.
565	Miller at al. (2014) compared chloride concentrations, oxygen isotopes, and hydrogen
566	isotopes in pore waters collected from whole round squeezing and rhizons. The rhizon samples
567	appeared to have higher [Cl ⁻] and greater enrichments in heavier isotopes (¹⁸ O and D). The
568	authors suggested some combination of water absorption onto the hydrophilic membrane, ion
569	exclusion and isotope fractionation due to clay ultrafiltration, and water evaporation during
570	degassing as possible sources for these offsets.
571	Rather than an issue with Rhizon sampling per se, an alternative explanation for analytical
572	discrepancies lies with collection time. A lengthy time between core retrieval and final pore
573	water collection could allow for changes in physiochemical conditions, which might relate to
574	evaporation and carbonate precipitation. Our experiments show that significant differences in the
575	chemical environment of cores occur during rhizon sampling. Consider the temperature (Figure
576	5a) and pH (Figure 5b) evolution over 24 hours for the five core sections from station S33 that
577	were analyzed. Note that the time to recover, to cut, and to transport these sections from the ship
578	deck to the geochemistry laboratory (total 1.71 hrs) was similar to that involved for other
579	samples (Table 1). Thus, we consider results from these cores representative.
580	Many authors have observed variations in pore water pH, DIC, alkalinity, and Ca ²⁺ values
581	over time (e.g., Gieskes, 1974; Paull et al., 1996; Wang et al., 2010; Sauvage, 2013). The

582	changes in sections from S33 clearly indicate that physiochemical conditions within the core
583	change significantly within 24 hours. The \sim 15 °C increase will alter inorganic solid-liquid
584	equilibrium conditions (de Lange et al., 1992), and should increase microbial respiration (Sander
585	and Kalff, 1993). The nominal ~0.25 drop in pH implies a reduction in alkalinity. Interestingly,
586	though, this appears opposite of results from sequential sampling, where each progressive
587	"generation" of pore water had greater alkalinity.
588	One issue is location. The pH sondes were always more than 10 cm from the nearest
589	rhizon. Although it is possible that the Rhizon's negative pressure in the sediment is
590	compensated by O ₂ /air increasing respiration, previous experiments on rhizon flow (Seeberg-
591	Elverfeldt et al., 2005; Dickens et al., 2007) indicate that rhizons generally pull water from <3
592	cm along the core. Thus, water masses adjacent to pH meters were likely "out-of
593	communication" with those being sampled by the rhizons. We suggest that at least two factors
594	effect chemistry: (1) temperature and pH (and pressure) of pore waters change with time after
595	core retrieval; and, (2) pore water chemistry evolves during water removal.
596	The observed evolution of pore water chemistry may be related to increasing temperature
597	and possible introduction of atmospheric air via the Rhizon drill hole each time the syringe was
598	removed. As temperature increases, greater microbial activity may drive pH down by increasing
599	CO2 concentration. Additionally, removing the syringe may have provided opportunity for
600	atmospheric air to enter the sediment through the filament. As the pH decreased, carbonate
601	dissolved, increasing HCO3 ⁻ concentration in the pore water. The Rhizons continually applied
602	additional negative pressure. However, as stated previously, the pH sondes were sufficiently far
603	from the Rhizons to be affected by pore water extraction.

604	As clearly documented here and in other works (Seeberg-Elverfeldt et al., 2005; Dickens et
605	al., 2007; Pohlman et al., 2008), rhizon sampling can lead to "smooth" concentration profiles for
606	multiple dissolved species, including alkalinity (Figures $6 - 10$). The concerns raised about
607	rhizon sampling may be valid for dissolved components when concentration gradients are low.
608	For example, Schrum et al. stressed alkalinity differences of 0.06 to 0.8 mM, but the total
609	alkalinity range in this study was 1.80 and 14.58 mM. A similar finding occurs in the dissolved
610	Ca ²⁺ and Ba ²⁺ profiles of this study, where adjacent samples deviate by amount greater than
611	analytical precision (Table 3, Figure 11). However, when the signal to noise ratio become high,
612	as true with most dissolved components at most stations (Figures $6 - 10$), the rhizon sampling
613	renders pore water profiles with well defined concentration gradients that can be interpreted in
614	terms of chemical reactions and fluxes.
615	

615

616 5.3 Reading the Pore Water Profiles

Pore water profiles in most marine sediment express solute fluxes resulting from 617 chemical reactions, sediment properties, and diffusion (Berner, 1980; Berg et al., 1998). Within 618 619 10 m of the seafloor, where temperature and the diffusion coefficient change minimally, depth intervals having inflections in the concentration gradient (dC/dz) generally represent zones 620 where production or consumption of dissolved components occur (ΔJ), or where porosity (ϕ) 621 changes significantly (Equation 2). Importantly, excepting areas of the seafloor with strong fluid 622 flow (e.g., mud volcanoes, cold seeps), methane charged sediments along continental margins 623 624 have very predictable pore water profiles. As previously emphasized, numerous studies demonstrate that a prominent SMT 625

626 characterizes shallow sediment in locations with high methane concentrations in underlying

627	strata. Moreover, inflections in pore water SO ₄ ²⁻ , alkalinity, δ^{13} C-DIC values, and hydrogen
628	sulfide consistently occur across this geochemical horizon (Figure 2). This is because AOM
629	consumes SO ₄ ²⁻ and produces ¹³ C-depleted HCO ₃ ⁻ and HS ⁻ (Equation 1). The overall
630	geochemistry is best understood by considering fluxes (Borowski et al., 1996; Berg et al., 1998;
631	Chatterjee et al., 2011). Across the SMT, upward migrating methane of some flux (JCH4) reacts
632	with downward diffusing SO_4^{2-} of equal flux but opposite sign (- JSO_4^{2-}). This leads to a sharp
633	concave-down inflection in SO_4^{2-} concentrations (i.e. the SMT), with the depth driven by JCH ₄ .
634	Fluxes of HCO ₃ ⁻ (JHCO ₃ ⁻) and HS ⁻ (JHS ⁻) of similar magnitude enter pore water, but are
635	expressed differently in pore water profiles. In general, the input of ¹³ C-depleted HCO ₃ ⁻
636	contributes to already ¹³ C-enriched HCO3 ⁻ concentrations, produced during methanogenesis
637	deeper in the sediment column. The consequence is a steep rise in HCO ₃ ⁻ concentrations with
638	depth, but having a positive kink across the SMT, where a coincident drop in the δ^{13} C-DIC
639	values occur. The input of HS ⁻ diffuses upward and downward, where it reacts with dissolved Fe
640	or sedimentary phases. The consequence is a "bell shaped" HS ⁻ pore water profile with the
641	maxima at the SMT.
642	Good examples of where such pore water chemistry is documented include: Baltic Sea
643	(Jørgensen et al, 1990), Black Sea (Jørgensen et al, 2004), Blake Ridge (Paull et al., 2000;
644	Borowski et al., 2001), Cariaco Trench (Reeburgh, 1976), Cascadia Margin (Torres and Kastner,
645	2009), Gulf of Mexico (Kastner et al., 2008a; Hu et al., 2010; Smith and Coffin, 2014), Hydrate
646	Ridge (Claypool et al., 2006), offshore Namibia (Niewohner et al., 1998), offshore Peru
647	(Donohue et al., 2006), South China Sea (Luo et al., 2013; Hu et al., 2015), and Sea of Japan
648	(Expedition Scientists, 2014). In any case, through use of Equation 2, fluxes of dissolved ions,
649	and by inference dissolved CH4, can be calculated from measured pore water concentration

- 650 profiles with knowledge of porosity and sedimentary diffusion constants (e.g., Niewohner et al.,
- 651 1998). At sites with abundant methane in the upper few hundred meters, notably including sites
- with gas hydrate, estimated values for JCH4 and -JSO4²⁻ are universally high (**Table 4**). This
- 653 includes sites in the Beaufort Sea, 154.8 mol/m²-kyr (Coffin et al., 2013), 102 mol/m²-kyr
- 654 (Umitaka Spur; Snyder et al., 2007), 86.2 mol/m²-kyr (Hikurangi Margin; Coffin et al., 2007),
- 655 362.0 mol/m²-kyr (Chilean Margin; Coffin et al., 2006), 162.5 mol/m²-kyr (Argentine Basin;
- Hensen et al., 2003; Figure 15). Methane above gas hydrates can migrate upward even faster
- through advective bubble ebullition at cold seeps (Joye et al., 2004).
- 658

659 5.4 General Absence of Methane

Direct measurements of dissolved CH4 in deep-sea sediment are complicated (Claypool
 and Kvenvolden 1983). During core retrieval and depressurization, gas ebullition occurs, which
 leads to significant CH4 loss from pore space. Interestingly, however, in sediments containing

high CH₄ concentrations and recovered through piston coring, gas release typically generates

obvious sub-horizontal cracks that span the core between the liner. No such cracks were

665 documented in any of the cores.

Excluding Station St31 on the southern Lomonosov Ridge (discussed below), there is no indication of a shallow SMT. Interstitial water sulfur concentrations do not drop below 22.78 mM within the upper 8 m. In fact, calculated downward SO_4^{2-} fluxes, as inferred from sulfur concentration gradients (**Table 4**) range from -1.8 to -9.2 mol/m²-kyr for all stations except Station S31. For comparison, with a temperature of 2 °C (**Figure 5a**) and measured porosities (**Figure 12a**), even an SMT at six mbsf would imply SO_4^{2-} flux of -40 mol/m²-kyr.

672	Given the lack of HS ⁻ and the measured pH at Station S33 (Figure 5), alkalinity should
673	closely approximate HCO ₃ ⁻ concentrations (Equation 4). Estimated HCO ₃ ⁻ fluxes do not exceed
674	6.8 mol/m2-kyr at any station east of the Lomonosov Ridge (Table 4). For comparison, when
675	alkalinity gradients are used to estimate JHCO3 ⁻ at sites with abundant CH4 at depth, values
676	generally exceed 30 mol/m ² -kyr above the SMT (Table 4). These extreme fluxes arise because
677	methanogenesis in deeper sediment drives an upward flux of HCO3 ⁻ (Figure 2), and because
678	AOM also contributes HS ⁻ to pore water at the SMT (Equation 1).
679	The δ^{13} C-DIC values of pore water decrease with depth at all stations, almost in concert
680	with the rise in alkalinity. However, other than Station S31, the lowest value of δ^{13} C-DIC is -
681	25.23 ‰ at 5.5 m at Station S22 (Figure 8). This is interesting because a series of microbial
682	reactions utilizing particulate organic matter (POM) can lead to higher alkalinity and lower δ^{13} C-
683	DIC values in pore water (Chatterjee et al., 2001). The most important of these reactions is
684	organoclastic sulfate reduction, which can be expressed as (Berner, 1980; Boudreau and
685	Westrich, 1984):
686	$2^{12}CH_2O + SO_4^{2-} \rightarrow H_2S + 2H^{12}CO_3^{-},$ (8)
687	where again the ¹² C superscript indicates depletion in ¹³ C. Notably, this reaction has a 2:1
688	relationship between C and S fluxes, rather than the 1:1 ratio of AOM (Equation 1).
689	As emphasized previously, methane-charged sediment sequences do occur on continental
690	slopes in the Arctic. Of particular interest to this study are locations in the Beaufort Sea, where
691	indications for gas hydrate manifest on seismic profiles (Grantz et al., 1976; Grantz et al., 1982;
692	Weaver and Stewart, 1982; Hart et al., 2011; Phrampus et al., 2014), and pore water profiles
693	have been generated using shallow piston cores (Coffin et al., 2013). Striking contrasts exist
694	between pore water profiles of the Beaufort Sea and those of the ESM (Table 4; Figure 15). In

- the Beaufort Sea, there are moderate to high downward sulfate and upward methane fluxes (1.9
- to 154.8 mol/m²-kyr), shallow SMTs (6.29 to 1.06 mbsf), high DIC fluxes between the SMT and
- the mudline (46.3 to 242.6), and negative δ^{13} C-DIC values at SMT's (\approx -20‰).
- 698
- 699 5.5 Special Case "Lomonosov Ridge Station"
- 700Station 31 on the Lomonosov Ridge (Figure 10) differs from all other stations examined
- in this study. Here, pore water chemistry profiles hint at CH₄ in pore space within shallow
- sediment. Extrapolation of the dissolved sulfur profile suggests an SMT at approximately 13.9
- m. Such a depth lies within the range common for locations with AOM (D'Hondt et al., 2002),
- notably including well studied sites on Blake Ridge (Borowski et al., 1999). Similar to some sites
- with CH₄, the δ^{13} C-DIC values become very "light"; indeed, the value at the base of the core, -
- 43.54, almost necessarily implies CH₄ oxidation and a shallow SMT. Comparably steep
- alkalinity (1.6 mM/m) and NH₄ gradients (60.4 μ M/m) also characterize other sites with CH₄
- near the seafloor. However, an issue concerns reduced sulfur produced via AOM (Equation 1).
- 709 One might expect evidence of HS⁻ migrating from below (Figure 2), but none was detected.
- A comparison of published DIC fluxes, SO4²⁻ fluxes, and SMT depths (**Table 4**) reveals
- 711 fluxes decrease exponentially with SMT depth (Figure 15). A fundamental relationship exists
- when one considers that CH₄ flux controls SMT depth (Equation 1; Figure 2). The modest
- SO_4^{2-} flux (-13.9 mol/m²-kyr) and alkalinity flux (11.3 mol/m²-kyr) of the Lomonosov Ridge
- station fits quite well with literature values of similar SMT depth. For example, Hensen et al.
- 715 (2003) calculated a -14.69 mol/m^2 -kyr SO4²⁻ flux for a site with an SMT at 14 m in the Argentine
- 716 Basin. Berg (2008) calculated a SO_4^{2-} flux of -8.05 mol/m²-kyr for a site with an SMT at 16 m at
- 717 the Costa Rican Margin.

718

719 5.6 Other Chemistry

720	A well-documented sequence of reactions characterize shallow marine sediment
721	(Froelich et al., 1979; Berner, 1980). Microbial communities preferentially utilize the most
722	energetically favorable oxidant available (Froelich et al., 1979; D'Hondt et al., 2002). Thus, with
723	increasing depth below the seafloor, a near universal order of oxidation/reduction reactions arise:
724	aerobic respiration, denitrification, manganese reduction, nitrate reduction, iron reduction, sulfate
725	reduction, and finally methanogenesis. Importantly, these reactions impact pore water chemistry
726	and the depths of zones dominated by these reactions generally depend on the supply of POM to
727	the seafloor.
728	Many of the cores collected along the slope of the ESM appear to terminate in the zone of
729	metal oxide reduction. This is because, at most stations, Mn and Fe profiles are still increasing at
730	the bottom of the sampled interval (Figure 6-10). The relatively deep depths of metal oxide
731	reduction are consistent with a relatively low input of POM to the seafloor, and moreover
732	generally contrast with sites of high CH4 concentrations in shallow sediment. From a simple
733	perspective, there may be insufficient POC to drive methanogenesis near the seafloor.
734	The station on the Lomonosov Ridge again stands apart. Here, Mn and Fe concentrations
735	reach maxima at 1.3 mbsf and 0.5 mbsf, respectively, and decrease below. Thus, complete
736	consumption of Mn and Fe occurs in the upper few meters, and methanogenesis could be
737	occurring below 13.9 mbsf.
738	

740	Some authors have used changes in DIC and SO4 ²⁻ concentrations between the seafloor
741	and the SMT to infer the relative importance of AOM and organoclastic sulfate reduction (OSR)
742	in marine sediments (Kastner et al. 2008b; Luo et al. 2013; Hu et al. 2015). The idea is can be
743	expressed by comparing Δ (DIC+Ca ²⁺ +Mg ²⁺) and Δ SO4 ²⁻ , where Ca ²⁺ and Mg ²⁺ are included to
744	account for loss of DIC via carbonate precipitation. The rationale lies in the fact that the C:S
745	ratio for AOM is 1:1 (Equation 1), whereas the C:S ratio for OSR is 2:1 (Equation 8).
746	However, this approach neglects two considerations: (1) changes in concentration do not directly
747	relate to fluxes, because of differences in diffusivities of various ionic species, and, (2) a flux of
748	HCO3 ⁻ from below the SMT can augment the DIC produced from AOM or OSR at or above the
749	SMT (Dickens and Snyder, 2009). Thus, changes in alkalinity relative to SO4 ²⁻ often exceed 1:1,
750	even at locations completely dominated by AOM (Chatterjee et al., 2011).
751	Rather than just comparing changes in C:S molar ratios, to interrogate the importance of
752	the two reactions, one might also incorporate δ^{13} C-DIC value. This is because δ^{13} C-DIC values
753	and the depth of DIC production differ considerably for AOM, OSR and methanogenesis at
754	many locations. We generate a figure expressing these relationships at multiple sites (Figure 16),
755	where the y-axis is:

$$\frac{\Delta(DIC + Ca^{2+} + Mg^{2+})}{\Delta(SO_4^{2-})},$$
(9)

and the x-axis is: DIC*δ¹³C-DIC. The C:S ratios of dissolved species lie above 1:1 at most
locations, regardless of whether CH₄ exists in shallow sediment However, sites with CH₄ have
considerably more negative DIC*δ¹³C-DIC values Notably, all stations from the ESM, except
S31 on the Lomonosov Ridge, have modest DIC*δ¹³C-DIC values.
Two basic models help to explain the relationships in Figure 16. The first model assumes

all SO_4^{2-} consumption occurs through OSR; whereas the second model assumes that SO_4^{2-}

762	consumption occurs via AOM and OSR, but DIC from methanogenesis also migrates upward
763	from below the SMT. The details of both models are included in Appendix 1. For the "OSR
764	only" model a C:S ratio of 2:1 at the mudline slowly increases as ¹³ C-depleted carbon is
765	produced. The ESM stations plot near to this model. In the AOM model a C:S ratio of 2.5:1 at
766	the mudline decreases rapidly to an asymptotic value of 1.6:1. The additional flux of DIC from
767	below the SMT prevents the second model from approaching 1:1. Although the height and slope
768	of this model can be changed by altering the fluxes, it shows that CH4 charged locations with
769	upward migrating DIC must have C:S molar ratios in excess of 1:1. It is possible that this upward
770	flux is a necessary characteristic of all sites with methanogenesis.
771	In summary, from general pore water considerations as well as from comparisons to pore
772	water profiles at other locations, sediments along the ESM continental slope do not contain
773	significant CH ₄ in shallow sediment. Implicit in this finding is that sediment sequences along the
774	ESM lack gas hydrate. As models for gas hydrate occurrence in the Arctic (Figure 1) correctly
775	predict gas hydrate in several regions (e.g., Kvenvolden and Grantz, 1990; Max and Lowrie,
776	1993; Max and Johnson, 2012), our findings prompt an interesting question: why are predictions
777	so markedly wrong for the ESM?
778	

779 *5.7 Explanations*

To understand the absence of gas hydrates on the ESM, one needs to consider the generalities of gas hydrate occurrence in marine sediment. There are two basic conditions for gas hydrate on continental slopes (Kvenvolden, 1993; Dickens, 2001). The first is the "potential volume", or the pore space where physiochemical conditions (e.g., temperature, pressure, salinity, sediment porosity) are amenable to gas hydrate formation. As stressed in previous

806

785	works, the ESM, with cold bottom water and a low geothermal gradient, has a relatively large
786	volume of sediment with appropriate gas hydrate stability conditions (Stranne et al., 2016). The
787	second is the "occupancy", or the fraction of sediment pore space with sufficient CH4 to
788	precipitate gas hydrate. The short answer is that environmental conditions on the ESM are highly
789	conducive for gas hydrate, but there is little CH4.
790	It is also important to recognize how diffusive systems operate in marine sediment.
791	Hundreds of pore water profiles have been generated during scientific ocean drilling expeditions,
792	including scores into CH4 charged sediment sequences. These profiles almost universally show
793	connectivity of pore water chemistry over hundreds of meters (Figure 2). This occurs because,
794	given sufficient permeability and time, diffusive fluxes transport species from intervals of high
795	concentration to intervals of low concentration. Hence, unless some impermeable layer exists in
796	the sediment sequence, even CH4 at depth impacts near seafloor concentrations. Indeed, ODP
797	Leg 164 on the outer Blake Ridge wonderfully shows this phenomenon. The uppermost gas
798	hydrate in sediment in this region probably lies at about 190 mbsf; nonetheless, its presence can
799	be observed in shallow pore water profiles, because the flux of CH4 from depth drives AOM near
800	the seafloor (Borowski et al., 1999; Dickens, 2001). Assuming that an impermeable layer does
801	not exist in the upper few hundreds of meters of sediment on slopes of the ESM, the lack of gas
802	hydrates and CH4 suggests either insufficient POC to generate CH4, or substantial loss of CH4
803	over time.
804	The accumulation of POC on slopes of the ESM may be relatively low over the Plio-
805	Pleistocene, an amount too small to drive methanogenesis. With low POC inputs, other microbial

807 why the pore water chemistry suggests that metal-oxide reduction dominates the geochemical

reactions can exhaust the organic matter needed for methanogenesis. This may, in fact, explain

808	environment at most stations on the ESM. Without further investigation, we can offer three
809	possibilities as to why this might occur: (1) significant sea-ice concentrations, both at present-
810	day and during past glacial intervals, greatly diminishes primary production within the water
811	column, (2) the extremely broad continental shelf prevents large accumulations of terrestrial
812	organic rich sediment from reaching the slope, or (3) highly variable sediment accumulation,
813	perhaps corresponding to glacial-interglacial oscillations, creates a situation where organic
814	matter can be consumed during intervals of low deposition. In the latter case, large glaciers in the
815	past may have physically removed sediment (and organic matter) from the slope (Jakobsson et
816	al., 2014)
817	There is also the issue of POC that likely accumulated in the Cretaceous through early
818	Eocene. In theory, organic-rich sediment accumulated around the Arctic during this time, which
819	should have generated CH4. This CH4 could either be too deeply buried to migrate into the
820	modern GHSZ or have been lost in the intervening time.

821

822 6. Conclusions

Leg 2 of the SWERUS-C3 expedition recovered sediments and pore waters from numerous stations across the ESM continental slope. These stations extend from Wrangel Island to the New Siberian Islands, and give information from a climatically sensitive but highly inaccessible area.

In an effort to understand CH₄ cycling on the ESM continental slope, we generated detailed pore water profiles of multiple dissolved constituents at the stations. The pore water profiles are coherent and interpretable, and give a general view: most stations have low SO4²⁻ and HCO₃⁻ fluxes (<9.2 and 6.8 mol/m²-kyr respectively), a moderate decrease in δ^{13} C-DIC values

831	with depth (-3.6‰/m average), no dissolved H_2S , moderate rise in HPO4 ²⁻ and NH4
832	concentrations, and slightly decreasing Ca ²⁺ , Mg ²⁺ , and Sr ²⁺ concentrations. Except for one
833	station on the Lomonosov Ridge, metal oxide reduction appears to be the dominant geochemical
834	environment affecting shallow sediment, and there is no evidence for upward diffusing CH ₄ .
835	These results strongly suggest that gas hydrates do not occur on slopes of the ESM. This directly
836	conflicts with multiple publications, which have assumed large quantities of CH4 and gas hydrate
837	in the region. It is possible that CH4 and gas hydrate occur where the Lomonosov Ridge
838	intersects the ESM.
839	The contradiction between models for gas hydrate in the region and actual data may arise
840	for two basic reasons. First, in relatively recent geological times, insufficient POC accumulates
841	along the slope to form CH4 and gas hydrates; second, CH4 generated from POC deposited in
842	older geological times is too deeply buried or has been lost.
843	
844	
845	Acknowledgments. The authors would like to thank the SWERUS-C3 Leg 2 crew as well as
846	reviewers.

847

- 848 Table List
- 849 Table 1 Rhizon Efficacy
- 850 Table 2 Rhizon Flow Rates
- 851 **Table 3 -** QA/QC
- 852 **Table 4 -** Published and Calculated Fluxes
- 853 a = Coffin et al., 2013; b = Personal Communication; c = Coffin et al., 2007; d = Coffin et al.,
- 854 2006; e = Coffin et al., 2008; f = Hamdan et al., 2011 and Coffin et al., 2014; g = Dickens and
- 855 Snyder, 2009; h= Snyder et al., 2007; i = Mountain et al., 1994; j = Lin et al., 2006; k = Berelson
- 856 et al., 2005; 1 = Hensen et al., 2003; m = Dickens, 2001; n = Geprags et al., 2016; o = Claypool et
- 857 al., 2006; p = Keigwin et al., 1998; q = Berg, 2008; r = Borowski et al., 2000; s = D'Hondt et al.,
- 858 2002; t = D'Hondt et al., 2004; u = Torres et al., 2009; v = Burns, 1998; w = Kastner et al., 2008;
- 859 x = Paull et al., 1996; y = Flood et al., 1995; z = Wefer et al., 1998; 1 = Prell et al., 1998; 2 =
- 860 Takahashi et al., 2011; 3 = Riedel et al., 2006; 4 = Tamaki et al., 1990; 5 = Lyle et al., 1997; 6 =
- 861 Moore et al., 2001; 7 = Kimura et al., 1997; 8 = Suess et al., 1988; 9 = D'Hondt et al., 2003. [‡] =
- 862 Calculated from published material.
- 863 **Table S1 -** All Results
- 864
- 865

866 Figure Captions

- **Figure 1.** Generalized Arctic map with background from GeoMapApp
- 868 (http://www.geomapapp.org; Ryan et al., 2009). Inserted gas hydrate models based on Max and
- Lowrie, 1993; Max and Johnson, 2012; and Soloviev, 2002.
- 870
- Figure 2. Idealized pore water concentration profiles for high and low upward methane flux.
- 872 Discrete data points for sites 722 (Arabian Sea; Seifert and Michaelis, 1991; D'Hondt et al.,
- 873 2002) and 1230 (offshore Peru; Donohue et al., 2006) are given as reference.
- 874
- Figure 3. Bathymetric map of the Eurasian Arctic showing the overall cruise track of Leg 2,
- along with the four transects and coring locations.
- 877

878	Figure 4. Rhizon sampling of S28 (a) overall core with Rhizon samples inserted and attached to
879	syringes; (b) close-up showing pore water filling syringes.
880	
881	Figure 5. Measured temperature and pH of Station 33 over 24 hours showing temperature
882	increase and concomitant decrease in pH. Only three pH profiles were collected due to pH meter
883	failure.
884	
885	Figure 6. Transect 1 results. ACEX results (grey triangles; Backman et al., 2009) and IAPSO
886	standard seawater (black dotted line) shown for comparison.
887	
888	Figure 7. Transect 2 results. ACEX results (grey triangles; Backman et al., 2009) and IAPSO
889	standard seawater (black dotted line) shown for comparison.
890	
891	Figure 8. Transect 3 results. ACEX results (grey triangles; Backman et al., 2009) and IAPSO
892	standard seawater (black dotted line) shown for comparison.
893	
894	Figure 9. Transect 4 results. ACEX results (grey triangles; Backman et al., 2009) and IAPSO
895	standard seawater (black dotted line) shown for comparison.
896	
897	Figure 10. Lomonosov Ridge Station results. ACEX results (grey triangles; Backman et al.,
898	2009), IAPSO standard seawater (black dotted line), and representative stations from the four
899	transects shown for comparison.
900	
901	Figure 11. Calcium "error" with sampling time. X-Axis equal to duration of time between core
902	retrieval and rhizon pore water completion.
903	
904	Figure 12. Relationship of (a) porosity and (b) rhizon extraction rate revealing the (c)
905	exponential correlation in flow rate with porosities commonly observed in piston, gravity, and
906	multicores.
907	

908	Figure 13. Relationship of (a) sulfate change (ΔSO_4^{2-}) and carbonate corrected alkalinity change
909	$(\Delta Alk+Ca^{2+}+Mg^{2+})$ following 2:1 ratio; (b) the second order polynomial association of NH ₄ ⁺ to
910	Alkalinity; and (c) decreasing δ^{13} C-DIC values with alkalinity increase. Methane charged sites
911	(1230, 1426, and 1427; 1230, Shipboard Scientific Party, 2003; 1426 and 1427, Expedition
912	Scientists, 2014) given for comparison.
913	
914	Figure 14. C:N:P ratio indirectly shown with $\Delta Alk/\Delta NH_4^+$ and $\Delta Alk/\Delta HPO_4^{2-}$. Several global
915	sites, 994, 995, 997, 1059, 1225, 1230, 1426, 1427, and 1319 (994-997, 1059, Borowski et al.,
916	2000; 1225 and 1230, Shipboard Scientific Party, 2003; 1426 and 1427, Expedition Scientists,
917	2014) given for comparison. Blue marginal distribution curves show global distribution while
918	red gives ESM stations (this project). ESM pore waters have higher C:N and lower C:P than
919	comparative sites.
920	
921	Figure 15. Bicarbonate (HCO3 ⁻) and sulfate (SO4 ²⁻) flux exponential relationship with SMT
922	depth for all sites listed in Table 4.
923	
924	Figure 16. Ratio of carbonate corrected alkalinity change ($\Delta Alk+Ca^{2+}+Mg^{2+}$) and sulfate change
925	(ΔSO_4^{2-}) to the product of DIC and $\delta_{13}C$ -DIC value (AT13-2 and KC151, Kastner et al., 2008a;
926	PC02-PC14, Coffin et al., 2008; 994-997, 1059, Borowski et al., 2000; Paull et al., 2000; 1326
927	and 1329, Torres and Kastner, 2009; GC233 and GB425, Hu et al., 2010; D-5 – D-8 and D-F, Hu
928	et al., 2015; C9-C19, Luo et al., 2013; PC-07, Smith and Coffin, 2014; 1230, Shipboard
929	Scientific Party, 2003; 1244 and 1247, Claypool et al., 2006; 1305 and 1306, Party, 2005)
930	including global sites for comparison) showing the paucity of methane charged sites actually
931	reaching 1:1 C:S ratio. Two simple models of OSR and OSR + AOM (following Chatterjee et
932	al., 2011; and Malinverno and Pohlman, 2011); given as dotted lines. When an additional flux of
933	HCO_3^- is added from below the SMT the C:S ratio is unlikely to reach 1:1.
934	
935	Error bars are one sigma. ESM plotted pore waters substitute alkalinity for DIC. With the
936	absence of sulfide, DIC and alkalinity should be roughly equivalent in these pore waters. ESM
937	locations use the same symbols as previous figures.

938 References:

- 939 Aagaard, K., Coachman, L. K., and Carmack, E. C.: On the halocline of the Arctic Ocean, Deep
- 940 Sea Res., 28, 529-545, 1981.
- 941 Aagaard, K. and Carmack, E. C.: The role of sea ice and other fresh water in the Arctic
- 942 Circulation, J. Geophys. Res., 94, 14485–14498, 1989.
- 943 Alekseev, M. N.: Paleogeography and geochronology in the Russian eastern arctic during the
- second half of the quaternary, Quatern. Int., 41/42, 11–15, 1997.
- 945 Alperin, M. J., Reeburgh, W. S., and Whiticar, M. J.: Carbon and hydrogen isotope fractionation
- resulting from anaerobic methane oxidation, Global Biogeochem. Cy., 2, 279-288, 1988.
- 947 Andreassen, K., Hogstad, K., and Berteussen, K. A.: Gas hydrate in the southern Barents Sea

948 indicated by a shallow seismic anomaly, First Break, 8, 235–245, 1990.

949 Andreev, A. A., Grosse, G., Schirrmeister, L., Kuznetsova, T. V., Kuzmina, S. A., Bobrov, A.

950 A., Tarasov, P. E., Novenko, E., Yu., Meyer, H., Derevyagin, A., Yu., Kienast, F.,

- 951 Bryantseva, A., and Kunitsky, V. V.: Weichselian and Holocene palaeoenvironmental
- 952 history of the Bol'shoy Lyakhovsky Island, New Siberian Archipelago, Arctic Siberia.
- 953 Boreas 38, 72–110, 2009.
- Archer, D. E.: Methane hydrate stability and anthropogenic climate change, Biogeosciences, 4,
 955 993-1057, 2007.
- Archer, D.: A model of the methane cycle, permafrost, and hydrology of the Siberian continental
 margin, Biogeosciences, 12 (10), 2953–2974, 2015.
- 958 Augstein, E.: Die Expedition ARCTIC'96 mit FS" Polarstern"(ARK XII) mit der Arctic Climate
- 959 System Study (ACSYS); The expedition ARCTIC'96 of RV" Polarstern"(ARK XII) with
- 960 the Arctic Climate System Study (ACSYS). Berichte zur Polarforschung (Reports on
- 961 Polar Research), 234, 1997.

42

- Backman, J., and Moran, K.: Expanding the Cenozoic paleoceanographic record in the Central
- 963 Arctic Ocean: IODP Expedition 302 Synthesis: Central European Journal of Geosciences,
- 964 1, 2, 157-175, 2009.
- Bakhmutov, V., Whitledge, T., Wood, K. and Ostrovskiy, A.: Report on the execution of marine
- 966 research in the Bering Strait, East Siberian and the Chukchi Sea by the Russian-American
- 967 Expedition under the program of" RUSALCA" during the period from 23 August through
 968 30 September, 2009.
- Barnes, R. O. and Goldberg, E. D.: Methane production and consumption in anoxic marine
 sediments, Geol. 4, 297–300, 1976.
- 971 Beaudoin, Y. C., Waite, W., Boswell, R., and Dallimore, S. R.: Frozen Heat: A UNEP Global
- 972 Outlook on Methane Gas Hydrates. Volume 1. UN. Environ. Programme, GRID-Arendal,
 973 2014
- 974 Berelson, W. M., Prokopenko, M., Sansone, F. J., Graham, A. W., McManus, J. and Bernhard, J.
- 975 M.: Anaerobic diagenesis of silica and carbon in continental margin sediments: discrete
- 2016 zones of TCO 2 production. Geochimica et cosmochimica acta, 69 (19), 4611-4629,
- 977 2005.
- Berg, P., Risgaard-Petersen, N., and Rysgaard, S.: Interpretation of measured concentration
 profiles in sediment pore water, Limnol. Oceanogr., 43, 1500-1510, 1998.
- Berg, R.D.: Diffusional methane fluxes within continental margin sediments and depositional
 constraints on formation factor estimates, ProQuest, 2008.
- Berner, R. A.: Diagenetic models of dissolved species in the interstitial waters of compacting
 sediments, Am. J. Sci., 275, 88–96, 1975.

- 984 Berner, R. A.: Stoichiometric models for nutrient regeneration m anoxic sediment?, Limnology,
- 985 22, 781-786, 1977
- Berner, R. A.: Early Diagenesis: A Theoretical Approach, Princeton University Press, Princeton,
 N. J., 1980.
- Bhatnagar, G., Chatterjee, S., Chapman, W. G., Dugan, B., Dickens, G. R., and Hirasaki G. J.:
 Analytical theory relating the depth of the sulfate-methane transition to gas hydrate
- distribution and saturation, Geochem. Geophy. Geosy., 12, 1-21, 2011.
- 991 Biastoch, A., Treude, T., Ruepke, L. H., Riebesell, U., Roth, C., Burwicz, E. B., Park, W., Latif,
- 992 M., Boening, C. W., Madec, G., and Wallmann, K.: Rising Arctic Ocean temperatures
- cause gas hydrate destabilization and ocean acidification, Geophys. Res. Lett., 38, 1-5,
 2011.
- Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F., Gieseke, A., Amann, R.,
 Jørgensen, B. B., Witte, U. and Pfannkuche, O.: A marine microbial consortium
- apparently mediating anaerobic oxidation of methane, Nature, 407, 623-626, 2000.
- Borowski, W. S., Paull, C. K., and Ussler III, W.: Marine porewater sulfate profiles indicate in
 situ methane flux from underlying gas hydrate, Geol. 24, 655–658, 1996.
- Borowski, W. S., Paull, C. K., and Ussler W. III: Global and local variations of interstitial sulfate
 gradients in deepwater, continental margin sediments: Sensitivity to underlying methane
 and gas hydrates, Mar. Geol., 159, 131–154, 1999.
- 1003 Borowski, W. S., Hoehler, T. M., Alperin, M. J., Rodriguez, N. M. and Paull, C.K.: Significance
- 1005 hydrates. In Proceedings of the ocean drilling program, scientific results (Vol. 164, pp.

of anaerobic methane oxidation in methane-rich sediments overlying the Blake Ridge gas

- ives invertices. In Proceedings of the ocean arming program, selentine results (vol. 104, pp.
- 1006 87-99, 2000).

1004

- 1007 Borowski, W. S., Cagatay, N., Ternois, Y., and Paull, C. K.: Data Report: carbon isotopic
- 1008 composition of dissolved CO2, CO2 gas, and methane, Blake –Bahama Ridge and
- 1009 Northeast Bermuda Rise, ODP Leg 172, In: Keigwin, L. D., Rio, D., Acton, G. D.,
- 1010 Arnold, E. (Eds.), Proceedings of the ODP. Scientific Results (College Station, TX), vol.
- 1011 172, 1–16, 2001.
- 1012 Boudreau, B. P. and Westrich, J. T.: The dependence of bacterial sulfate reduction on sulfate
- 1013 concentration in marine sediments, Geochimica Cosmochimica Acta, 48, 2503–2516,
 1014 1984.
- Buffett, B. and Archer, D.: Global inventory of methane clathrate: sensitivity to changes in the
 deep ocean, Earth Planet. Sc. Lett., 227, 185–199, 2004.
- 1017 Burns, S.J.: Carbon isotopic evidence for coupled sulfate reduction-methane oxidation in
- 1018 Amazon Fan sediments. Geochimica et Cosmochimica Acta, 62(5), 797-804, 1998.
- 1019 Carcione, J. M. and Tinivella, U.: Bottom-simulation reflectors: Seismic velocities and AVO
 1020 effects, Geophysics, 65, 54–67, 2000.
- 1021 Chatterjee, S., Dickens, G. R., Bhatnagar, G., Chapman, W. G., Dugan, B., Snyder, G. T., and
- 1022 Hirasaki, G. J.: Pore water sulfate, alkalinity, and carbon isotope profiles in shallow

1023 sediment above marine gas hydrate systems: A numerical modeling perspective, J.

- 1024 Geophys. Res-Sol. Ea., 116, 1-25, 2011.
- 1025 Chand, S., Mienert, J., Andreassen, K., Knies, J., Plassen, L., and Fotland, B.: Gas hydrate
- 1026 stability zone modelling in areas of salt tectonics and pockmarks of the Barents Sea
- suggests an active hydrocarbon venting system, Mar. Petrol. Geol., 25, 625–636, 2008.
- 1028 Clark, D. L.: Early history of the Arctic Ocean, Paleoceanography, 3, 539-550, 1988.

- 1029 Claypool, G. E. and Kvenvolden, K. A.: Methane and other hydrocarbon gases in marine
- 1030 sediment, Annu. Rev. Earth Pl. Sc., 11, 299-327, 1983.
- 1031 Claypool, G. E., Milkov, A. V., Lee, Y. J., Torres, M. E., Borowski, W.S., and Tomaru, H.:
- 1032 Microbial Methane Generation and Gas Transport in Shallow Sediments of an
- 1033 Accretionary Complex, Southern Hydrate Ridge (ODP Leg 204), Offshore Oregon USA,
- 1034 In: Trehu, A.M., Bohrmann, G., Torres, M.E., Colwell, F.S. (Eds.), In Proceedings of the
- 1035 ODP, Scientific Results. Ocean Drilling Program, College Station, Texas, 2006.
- 1036 Cline, J. D.: Spectrophotometric determination of hydrogen sulfide in natural waters, Limnol.
- 1037 Oceanogr., 14, 454-458, 1969.
- 1038 Coffin, R. B., Pohlman, J. W., Gardner, J., Downer, R., Wood, W., Hamdan, L., Walker, S.,
- Plummer, R., Gettrust, J., and Diaz, J.: Methane hydrate exploration on the mid Chilean
 coast: a geochemical and geophysical survey, J. Petrol. Sci. Eng., 56, 32-41, 2007.
- 1041 Coffin, R., Hamdan, L., Pohlman, J., Wood, W., Pecher, I., Henrys, S., Greinert, J., and Faure,
- 1042 K.: Geochemical characterization of concentrated gas hydrate deposits on the Hikurangi
- 1043 Margin, New Zealand. Preliminary Geochemical Cruise Report. NRL/MR/ 6110-07,
- 1044 2007.
- 1045 Coffin, R. B., Hamdan, L. J., Plummer, R., Smith, J., Gardner, J., Hagen, R., and Wood, W.:
- 1046
 Analysis of Methane and Sulfate Flux in Methane-charged Sediments from the
- 1047 Mississippi Canyon, Gulf of Mexico, Mar. Petrol. Geol., 25, 977–987, 2008.
- 1048 Coffin, R. B., Plummer, R. B., Yoza, B., Larsen, R. K., Millholland, L. C., and Montgomery, M.
- T.: Spatial variation in shallow sediment methane sources and cycling on the Alaskan
 Beaufort Sea Shelf/Slope, Mar. Petrol. Geol., 45, 186-197, 2013.

- 1051 Coffin, R. B., Hamdan, L. J., Smith, J. P., Rose, P. S., Plummer, R. E., Yoza, B., Pecher, I. and
- 1052 Montgomery, M.T.: Contribution of vertical methane flux to shallow sediment carbon
- 1053 pools across Porangahau ridge, New Zealand. Energies, 7 (8), 5332-5356, 2014.
- 1054 Collett, T.S.: Energy resource potential of natural gas hydrates, AAPG Bull., 86, 1971–1992,
 1055 2002.
- 1056 Collett, T. S., Lee, M. W., Agena, W. F., Miller, J. J., Lewis, K. A., Zyrianova, M. V., Boswell,
- 1057 R., and Inks, T. L.: Permafrost associated natural gas hydrate occurrences on the Alaska
 1058 North Slope, Mar. Petrol. Geol., 28, 279-294, 2010.
- D'Hondt, S., Rutherford, S., and Spivack, A.J.: Metabolic activity of subsurface life in deep-sea
 sediments, Science, 295, 2067-2070, 2002.
- D'Hondt, S. L., Jørgensen, B. B., Miller, D. J., and Shipboard Scientific Pary: Proceedings of the
 Ocean Drilling Program, Initial Reports Volume 201, 2003.
- 1063 D'Hondt, S., Jørgensen, B. B., Miller, D. J., Batzke, A., Blake, R., Cragg, B. A., Cypionka, H.,
- 1064 Dickens, G. R., Ferdelman, T., Hinrichs, K. U. and Holm, N.G.: Distributions of
- 1065 microbial activities in deep subseafloor sediments. Science, 306 (5705), 2216-2221,
- 1066 2004.
- Danyushevskaya, A., Yashin, D. S., and Kirillow, O. V.: Geochemical patterns of distribution of
 organic carbon in the bottom sediments of Arctic seas, Oceanology, 20, 183-188, 1980.
- 1069 Darby, D. A., Naidu, A. S., Mowatt, T. C., and Jones, G.: Sediment composition and
- 1070 sedimentary processes in the Arctic Ocean. In: Y. Herman (Editor), The Arctic Seas:
- 1071 Climatology, Oceanography, Geology and Biology, Van Nostrand Reinhold, New York,
- 1072 657-720, 1989.

- 1073 De Lange, G. J., Cranston, R. E., Hydes, D. H. and Boust, D.: Extraction of pore water from
- 1074 marine sediments: A review of possible artifacts with pertinent examples from the North
- 1075 Atlantic. Mar. Geol., 109, 53-76, 1992.
- Dehairs, F., Chesselet, R., and Jedwab, J.: Discrete suspended particles of barite and the barium
 cycle in the ocean, Earth Planet. Sci. Lett., 49, 528–550, 1980.
- 1078 Devol, A. H.: Are high rates of sulphate reduction associated with anaerobic oxidation of
- 1079 methane?, Nature, 291, 407-408, 1981.
- 1080 Dickens, G. R., Paull, C. K. and Wallace, P.: Direct measurement of in situ methane quantities in

a large gas hydrate reservoir. Nature, 385, 426-428, 1997.

- 1082 Dickens, G. R.: Sulfate profiles and barium fronts in sediment on the Blake Ridge. Present and
- past methane fluxes through a large gas hydrate reservoir, Geochim. Cosmochim. Ac.,
 65, 529-543, 2001.
- 1085 Dickens, G. R.: Rhizon sampling of pore waters on scientific drilling expeditions: an example
- 1086 from the IODP Expedition 302, Arctic Coring Expedition (ACEX). Sci. Drill 4, 22–25,
 1087 2007.
- 1088 Dickens, G.R. and Snyder, G.T.: Interpreting upward methane flux from marine pore water
- 1089 profiles, In: Fire in the Ice, NETL Methane Hydrate Newsletter 9 (1), 7-10, 2009.
- Domenico, P.A. and Schwartz, F.W.: Physical and chemical hydrogeology, (Vol. 44), New
 York: Wiley, 1998.
- D'Hondt, S., Rutherford, S., and Spivack, A. J.: Metabolic activity of subsurface life in deep-sea
 sediments, Science, 295, 2067–2070, 2002.
- Dmitrenko, I. A., Polyakov, I. V., Kirillov, S. A., Timokhov, L. A., Frolov, I. E., Sokolov, V. T.,
 Simmons, H. L., Ivanov, V. V., and Walsh, D.: Toward a warmer Arctic Ocean:

1096

1097	Basin margins, J. Geophys. Res-Oceans 113, 1-13, 2008.
1098	Dmitrenko, I. A., Bauch, D., Kirillov, S. A., Koldunov, N., Minnett, P. J., Ivanov, V. V.,
1099	Hölemann, J. A., and Timokhov, L. A.: Barents Sea upstream events impact the
1100	properties of Atlantic water inflow into the Arctic Ocean: Evidence from 2005 to 2006
1101	downstream observations, Deep-Sea Research I, 56, 513-527, 2009
1102	Donohue, C. M., Snyder, G. T., and Dickens, G. R.: Data report: major cation concentrations of
1103	interstitial waters collected from deep sediments of Eastern Equatorial Pacific and Peru
1104	Margin (ODP Leg 201), Proceedings of ODP, Scientific Results, 201, Ocean Drilling
1105	Program, College Station, TX, 2006.
1106	Dymond, J., Suess, E., and Lyle, M.: Barium in deep-sea sediment: A geochemical proxy for
1107	paleoproductivity, Paleoceanography 7, 163–181, 1992.
1108	Elliott, S., Maltrud, M., Reagan, M., Moridis, G., and Cameron-Smith P.: Marine methane cycle
1109	simulations for the period of early global warming, J. Geophys. Res-Biogeo., 116, 1-13,
1110	2011.
1111	Engen, Ø., Faleide, J. I., and Dyreng, T. K.: Opening of the Fram Strait gateway: A review of
1112	plate tectonic constraints: Tectonophysics, 450, 1-69, 2008.
1113	Expedition 346 Scientists: Asian Monsoon: onset and evolution of millennial-scale variability of
1114	Asian monsoon and its possible relation with Himalaya and Tibetan Plateau uplift, IODP
1115	Preliminary Report, 346, 2014.
1116	Eiken, O. and Hinz, K.: Contourites in the Fram Strait, Sediment Geol., 82, 15–32, 1993.

spreading of the early 21st century Atlantic Water warm anomaly along the Eurasian

1117	Ferré, B., Mienert, J., and Feseker, T.: Ocean temperature variability for the past 60 years on the
1118	Norwegian-Svalbard margin influences gas hydrate stability on human time scales, J.
1119	Geophys. Res., 117, 1-14, 2012.
1120	Flood, R. D., Piper, D. J. W., Klaus, A., and Scientific Research Party: Proceedings of the Ocean
1121	Drilling Program, Initial Reports, 155: College Station, TX (Ocean Drilling Program),
1122	1995.
1123	Froelich, P., Klinkhammer, G. P., Bender, M. A. A., Luedtke, N. A., Heath, G. R., Cullen, D.,
1124	Dauphin, P., Hammond, D., Hartman, B., and Maynard, V.: Early oxidation of organic
1125	matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis,
1126	Geochim. Cosmochim. Ac., 43, 1075-1090, 1979.
1127	Gao, H., Schreiber, F., Collins, G., Jensen, M. M., Kostka, J. E., Lavik, G., de Beer, D., Zhou, H.
1128	Y., and Kuypers, M. M.: Aerobic denitrification in permeable Wadden Sea sediments,
1129	The ISME J., 4, 417-426, 2010.
1130	Geprägs, P., Torres, M. E., Mau, S., Kasten, S., Römer, M., and Bohrmann, G.: Carbon cycling
1131	fed by methane seepage at the shallow Cumberland Bay, South Georgia, sub-Antarctic,
1132	Geochem. Geophy. Geosy., 17, 1401-1418, 2016.
1133	Gieskes, J. M. and Rogers, W. C.: Alkalinity determination in interstitial waters of marine
1134	sediments, J. Sediment. Res., 43(1), 272-277, 1973.
1135	Gieskes J. M.: The alkalinity-total carbon dioxide system in seawater, In The Sea, vol. 5 (ed. E.
1136	D. Goldberg). John Wiley and Sons, New York, 123–151, 1974.
1137	Gieskes, J. M., Gamo, T., and Brumsack, H.: Chemical methods for interstitial water analysis

aboard JOIDES Resolution, 1991.

- 1139 Gingele, F. and Dahmke, A.: Discrete barite particles and barium as tracers of paleoproductivity
- in South Atlantic sediments, Paleoceanography, 9, 151–168, 1994.
- 1141 Giustiniani, M., Tinivella, U., Jakobosson, M., and Rebesco, M.: Arctic Ocean gas hydrate
- stability in a changing climate, J. Geol. Res., 1-10, 2013.
- 1143 Goldhaber, M.: Kinetic Models of Sulfur Diagenesis in Recent Marine Sediments, In
- 1144 Transactions-AGU, 55, 696-697, 1974.
- Grantz, A., Boucher, G., and Whitney, O. T.: Possible solid gas hydrate and natural gas deposits
 beneath the continental slope of the Beaufort Sea, U.S. Geological Survey Circulation
- 1147 Number 733, 1976.
- 1148 Grantz, A., Mann, D. M., and May, S. D.: Tracklines of multichannel seismic-reflection data
- 1149 collected by the U.S. Geological Survey in the Beaufort and Chukchi Seas in 1977 for
- 1150 which profiles and stack tapes are available, U.S. Geological Survey Open-File Report
- 1151 1982, 82-735, 1982.
- 1152 Greinert, J., Bohrmann, G., and Suess, E.: Gas hydrate-associated carbonates and methane-
- venting at Hydrate Ridge: classification, distribution, and origin of authigenic lithologies,
 Natural gas hydrates: Occurrence, distribution, and detection, 99-113, 2001.
- 1155 Gualtieri, L., Vartanyan, S., Brigham-Grette, J., and Anderson, P. M.: Evidence for an ice-free
- Wrangel Island, Northeast Siberia during the Last Glacial Maximum, Boreas 34, 264–
 273, 2005.
- 1158 Gusev, E., Anikina, N., Andreeva, I., Bondarenko, S., Derevyanko, L., Iosifidi, A., Klyuvitkina,
- 1159T., Litvinenko, I., Petrova, V., Polyakova, E., Popov, V., and Stepanova, A.: Stratigraphy1160of Late Cenozoic sediments of the western Chukchi Sea: New results of shallow drilling
- and seismic reflection profiling, Global Planet. Change, 68, 115–131, 2009.

1162	Haacke, R. R., Westbrook, G. K., and Riley, M.: Controls on the formation and stability of gas
1163	hydrate-related bottom-simulating reflectors (BSRs): a case study from the west Svalbard
1164	continental slope, J. Geophys. Res., 113, 1-17, 2008.
1165	Hamdan, L. J., Gillevet, P. M., Pohlman, J. W., Sikaroodi, M., Greinert, J., and Coffin, R.B.:
1166	Diversity and biogeochemical structuring of bacterial communities across the Porangahau
1167	ridge accretionary prism, New Zealand, FEMS Microbiol. Ecol., 77, 518-532, 2011.
1168	Haraldsson, C., Anderson, L. G., Hassellöv, M., Hulth, S., and Olsson, K.: Rapid, high-precision
1169	potentiometric titration of alkalinity in ocean and sediment pore waters, Deep Sea
1170	Research Part I: Oceanographic Research Papers, 44, 2031-2044, 1997.
1171	Hart, P. E., Pohlman, J. W., Lorenson, T. D., and Edwards, B. D.: Beaufort Sea Deep-water gas
1172	hydrate recovery from a seafloor mound in a region of widespread BSR occurence, in
1173	Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011),
1174	Edinburgh, Scotland, 2011.
1175	Hensen, C., Zabel, M., Pfiefer, K., Schwenk, T., Kasten, S., Riedinger, N., Schulz, H. D.,
1176	Boetius, A.: Control of sulfate porewater profiles by sedimentary events and the
1177	significance of anaerobic oxidation of methane for the burial of sulfur in marine
1178	sediments, Geochimica Cosmochimica Acta 67, 2631-2647, 2003.
1179	Holbrook, W. S., Hoskins, H., Wood, W. T., Stephen, R. A., and Lizarralde, D.: Methane hydrate
1180	and free gas on the Blake ridge from vertical seismic profiling, Science, 273, 1840–1843,
1181	1996.
1182	Holmes, R. M., McClelland, J. W., Peterson, B. J., Shiklomanov, I. A., Shiklomanov, A. I.,
1183	Zhulidov, A. V., Gordeev, V. V., and Bobrovitskaya, N. N.: A circumpolar perspective
1184	on fluvial sediment flux to the Arctic Ocean, Global Biogeochem. Cy., 16, 1-14, 2002.

- Holler, T., Wegener, G., Knittel, K., Boetius, A., Brunner, B., Kuypers, M. M., and Widdel, F.:
- 1186 Substantial 13C/12C and D/H fractionation during anaerobic oxidation of methane by
- 1187 marine consortia enriched in vitro, Environ. Microbiol. Rep., 1, 370-376, 2009.
- Hovland, M. and Svensen, H.: Submarine pingoes: Indicators of shallow gas hydrates in a
 pockmark at Nyegga, Norwegian Sea, Mar. Geol., 228, 15–23, 2006.
- 1190 Hu, X., Cai, W. -J, Wang, Y., Luo, S., and Guo X.: Pore-water geochemistry of two contrasting
- brine-charged seep stations in the northern Gulf of Mexico continental slope, Mar.
 Geochem., 118, 99–107, 2010.
- 1193 Hu, Y., Feng, D., Liang, Q., Xia, Z., Chen, L., and Chen, D.: Impact of anaerobic oxidation of
- methane on the geochemical cycle of redox-sensitive elements at cold-seep stations of the
 northern South China Sea. Deep Sea Research Part II: Topical Studies in Oceanography,
 2015.
- 1197 Hustoft, S., Bünz, S., Mienert, J., and Chand, S.: Gas hydrate reservoir and active methane-
- venting province in sediments on <20Ma young oceanic crust in the Fram Strait, offshore
 NW-Svalbard, Earth Planet. Sc. Lett., 284, 12-24, 2009.
- Hyndman, R. D. and Dallimore, S. R.: Natural gas hydrates studies, Canada Recorder, 26, 11–20,
 2001.
- 1202 Jakobsson, M.: Hypsometry and volume of the Arctic Ocean and its constituent seas:
- 1203 Geochemistry, Geophysics, Geosystems, 3, 5, 1-18, 2002
- Jakobsson, M., Grantz, A., Kristoffersen, Y., and Macnab, R.: Physiographic provinces of the
 Arctic Ocean seafloor, GSA Bull., 115, 1443-1455, 2003.
- 1206 Jakobsson, M., Backman, J., Rudels, B., Nycander, J., Frank, M., Mayer, L., Jokat, W.,
- 1207 Sangiorgi, F., O'Regan, M., Brinkhuis, H., King, J., and Moran, K.: The early Miocene

- 1208 Onset of a Ventilated Circulation Regime in the Arctic Ocean: Nature, 447, 21, 986-990,
- 1209 2007.
- Jakobsson, M., Polyak, L., Edwards, M., Kleman, J., and Coakley, B.: Glacial geomorphology of
 the Central Arctic Ocean: the Chukchi Borderland and the Lomonosov Ridge, Earth Surf.
- 1212 Proc. Land., 33, 526-545, 2008.
- 1213 Jakobsson, M., Andreassen, K., Bjarnadóttir, L. R., Dove, D., Dowdeswell, J. A., England, J. H.,
- 1214 Funder, S., Hogan, K., Ingólfsson, Ó., Jennings, A., Krog-Larsen, N., Kirchner, N.,
- 1215 Landvik, J. Y., Mayer, L., Möller, P., Niessen, F., Nilsson, J., O'Regan, M., Polyak, L.,
- Nørgaard-Pedersen, N., and Stein, R.: Arctic Ocean glacial history, Quaternary Sci. Rev.,
 92, 40-67, 2014.
- Jørgensen, B. B., Bang, M., and Blackburn, T. H.: Anaerobic mineralization in marine sediments
 from the Baltic Sea-North Sea transition, Mar. Ecol. Progress Series, 59, 39-54, 1990.
- 1220 Jørgensen, B. B., Weber, A. and Zopfi, J.: Sulfate reduction and anaerobic methane oxidation in
- Black Sea sediments. Deep Sea Research Part I: Oceanographic Research Papers, 48 (9),
 2097-2120, 2001.
- Jørgensen, B. B., Böttcher, M. E., Lüschen, H., Neretin, L. N., and Volkov, I. I.: Anaerobic
- methane oxidation and the deep H2S sink generate isotopically heavy sulfides in Black
 Sea sediments, Geochim. Cosmochim. Ac., 68, 2095–2118, 2004.
- 1226 Jørgensen, B. B. and Parkes, R. J.: Role of sulfate reduction and methane production by organic
- 1227 carbon degradation in eutrophic fjord sediments (Limfjorden, Denmark), Limnol.
- 1228 Oceanogr, 55, 1338-1352, 2010.

- 1229 Jokat, W.: The expedition of the Research Vessel" Polarstern" to the Arctic in 2009 (ARK-
- 1230 XXIV/3). Berichte zur Polar-und Meeresforschung (Reports on Polar and Marine
- 1231 Research), 615, 2010.
- Jokat, W. and Ickrath, M.: Structure of ridges and basins off East Siberia along 81° N, Arctic
 Ocean, Mar. Petrol. Geol., 64, 222-232, 2015.
- 1234 Joye, S. B., Boetius, A., Orcutt, B. N., Montoya, J. P., Schulz, H. N., Erickson, M. J. and Lugo,
- S.K.: The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf
 of Mexico cold seeps. Chemical Geology, 205 (3), 219-238, 2004.
- Jenkyns, H. C., Forster, A., Schouten, S., and Sinninghe Damsté, J. S.: High temperatures in the
 Late Cretaceous Arctic Ocean, Nature, 432, 888–892, 2004.
- 1239 Judge, A. S.: Natural gas hydrates in Canada, In: M.H. French (Editor), Proceedings of the
- 1240 Fourth Canadian Permafrost Conference 1981, Roger J.E. Brown Memorial Volume,
- 1241 National Research Council of Canada, Ottawa, Ont., 320-328, 1982.
- 1242 Kastner, M., Claypool, G., and Robertson, G.: Geochemical constraints on the origin of the pore
- fluids and gas hydrate distribution at Atwater Valley and Keathley Canyon, northern Gulf
 of Mexico, Mar. Petr. Geol., 25, 860–872, 2008a.
- 1245 Kastner, M., Torres, M., Solomon, E., and Spivack, A. J.: Marine pore fluid profiles of dissolved
- sulfate; do they reflect in situ methane fluxes?, In: Fire in the Ice, NETL Methane
- 1247 Hydrate Newsletter, Summer, 2008b.
- 1248 Keigwin, L. D., Rio, D., Acton, G. D., and Shipboard Scientific Party: Proceedings of the Ocean
- Drilling Program, Initial Reports, 172: College Station, TX (Ocean Drilling Program),
 1250 1998.

- 1251 Kimura, G., Silver, E. A., Blum, P., Shipboard Scientific Party: Proceedings of the Ocean
- 1252 Drilling Program, Initial Reports, Vol. 170, 1997.
- 1253 Klauda, J. B. and Sandler, S. I.: Global distribution of methane hydrate in ocean sediment,
- 1254 Energy Fuel, 19, 469–78, 2005.
- 1255 Klump, J. V. and Martens, C. S.: Biogeochemical cycling in an organic rich coastal marine
- 1256 basin—II. Nutrient sediment-water exchange processes, Geochim. Cosmochim. Ac., 45,
- 1257 101-121, 1981.
- 1258 Kvenvolden, K. A., and Grantz, A.: Gas hydrates in the Arctic Ocean region, in The Arctic
- 1259 Ocean Region, Geology of North America, Geol. Soc. of Am., Boulder, Colo., 539-549,
 1260 1990.
- 1261 Kvenvolden, K. A.: Gas hydrates: Geological perspective and global change, Rev. Geophys., 31,
 1262 173–187, 1993.
- 1263 Kvenvolden, K. A. and Lorenson, T. D.: The global occurrence of natural gas hydrate. In: Paull,
- 1264 C. K., Dillon, W. P. (Eds.), Natural Gas Hydrates: Occurrence, Distribution, and
- 1265 Detection, AGU Geophy. Monograph Ser., 124, 3–18, 2001.
- Laberg, J. S. and Andreassen, K.: Gas hydrate and free gas indications within the Cenozoic
 succession of the Bojornya Basin, western Barents Sea, Mar. Petrol. Geol., 13, 921-940,
 1996.
- Laberg, J. S., Andreassen, K., and Knutsen, S. M.: Inferred gas hydrate on the Barents Sea shelf
 a model for its formation and a volume estimate, Geo-Mar. Lett., 18, 26–33, 1998.
- 1271 Lerman, A.: Migrational processes and chemical reactions in Sulfate profiles and barium fronts
- in sediment 539 interstitial waters, In The Sea, Volume VI (ed. E. D. Goldberg), Wiley,
- 1273 New York, 695-738, 1977.

- 1274 Li, Y-H. and Gregory, S.: Diffusion of ions in sea sediments. Geochim. Cosmochim. Ac., 38,
- 1275 703-714, 1974.
- 1276 Lin, S., Hsieh, W. C., Lim, Y. C., Yang, T. F., Liu, C. S., and Wang, Y.: Methane migration and
- its influence on sulfate reduction in the Good Weather Ridge region, South China Sea
- 1278 continental margin sediments, Terr. Atmos. Ocean. Sci., 17, 883-902, 2006.
- 1279 Lorenson, T. D. and Kvenvolden, K. A.: Methane in coastal seawater, sea ice, and bottom
- sediments, Beaufort Sea, Alaska, USGS Open-File Report 95–70, 1995.
- 1281 Løvø, V., Elverhøi, A., Antonsen, P., Solheim, A., Butenko, G., Gregersen, O., and Liestøl O.:
- Submarine permafrost and gas hydrates in the northern Barents Sea, Norsk Polarinstitutt
 Rapportserie, 56, 1-171, 1990.
- 1284 Luff, R. and Wallmann, K.: Fluid flow, methane fluxes, carbonate precipitation and
- 1285 biogeochemical turnover in gas hydrate-bearing sediments at hydrate ridge, Cascadia
- margin: numerical modeling and mass balances, Geochim. Cosmochim. Ac., 67, 3403–
 3421, 2003.
- 1288 Luo, M., Chen, L., Wang, S., Yan, W., Wang, H., and Chen, D.: Pockmark activity inferred from
- 1289 pore water geochemistry in shallow sediments of the pockmark field in southwestern
- 1290 Xisha Uplift, northwestern South China Sea, Mar. Pet. Geol., 2013, 48, 247–259, 2013.
- Lyle, M., Koizumi, I., Richter, C., and Shipboard Scientific Party: Proceedings of the OceanDrilling Program, Initial Reports, Vol. 167, 1997.
- 1293 MacKay, M. E., Jarrard, R. D., Westbrook, G. K., Hyndman, R. D., and Shipboard Scientific
- Party: Origin of bottom-simulating reflectors: geophysical evidence from the Cascadia
 accretionary prism, Geol., 22, 459–462, 1994.

- 1296 Majorowicz, J. A. and Osadetz, K. G.: Gas hydrate distribution and volume in Canada. AAPG
- 1297 bulletin, 85 (7), 1211-1230, 2001.
- Makogon, Y. F.: Natural gas hydrates–A promising source of energy, J. Nat. Gas Sc. Eng., 2, 4959, 2010.
- 1300 Malinverno, A. and Pohlman, J. W.: Modeling sulfate reduction in methane hydrate-bearing
- 1301 continental margin sediments: does a sulfate-methane transition require anaerobic

1302 oxidation of methane, Geochem. Geophy. Geosy., 12, 1-18, 2011.

- 1303 Max, M. D. and Lowrie, A.: Natural gas hydrates: Arctic and Nordic Sea potential. Arctic
- 1304 geology and petroleum potential, proceedings of the Norwegian Petroleum Society
- 1305 conference, 15-17 August 1990, Tromsø, Norway. No. 2. Elsevier Science Ltd., 1993.
- Max, M. D. and Johnson, A. H.: Natural Gas Hydrate (NGH) Arctic Ocean potential prospects
 and resource base, OTC Arctic Technology Conference, 27-53, 2012.
- 1308 McGuire, A. D., Anderson, L. G., Christensen, T. R., Dallimore, S., Guo, L. D., Hayes, D. J.,
- 1309 Heimann, M., Lorenson, D. D., MacDonald, R. W., and Roulet, N.: Sensitivity of the
- 1310 carbon cycle in the Arctic to climate change, Ecol. Monogr., 79, 523–555, 2009.
- Miles, P. R.: Potential distribution of methane hydrate beneath the European continental margins,
 Geophys. Res. Lett., 22, 3179-3182, 1995.
- 1313 Miller, M. D., Adkins, J. F., and Hodell, D. A.: Rhizon sampler alteration of deep ocean
- sediment interstitial water samples, as indicated by chloride concentration and oxygen
- and hydrogen isotopes, Geochem. Geophy. Geosy., 15, 2401-2413, 2014.
- 1316 Moore, G. F., Taira, A., and Klaus, A., and Shipboard Scientific Party: Proceedings of the Ocean
- 1317 Drilling Program, Initial Reports Volume 190, 2001.

- 1318 Moran, K., Backman, J., Brinkhuis, H., Clemens, S. C., Cronin, T., Dickens, G. R., Eynaud, F.,
- 1319 Gattacceca, J., Jakobsson, M., Jordan, R.W., and Kaminski, M.: The Cenozoic
- palaeoenvironment of the arctic ocean, Nature, 441, 601-605, 2006.
- 1321 Mountain, G. S., Miller, K. G., Blum, P., and Shipboard Scientific Party: Proc. ODP, Initial
- 1322 Reports, 150: College Station, TX (Ocean Drilling Program), 1994.
- 1323 Murray, R. W., Miller, D. J., and Kryc, K. A.: Analysis of major and trace elements in rocks,
- sediments, and interstitial waters by inductively coupled plasma–atomic emission
 spectrometry (ICP-AES), ODP Technical Note 29, 2000.
- 1326 Naidu, A. S., Cooper, L. W., Finney, B. P., Macdonald, R. W., Alexander, C., and Semiletov, I.
- P.: Organic carbon isotope ratios (δ13C) of Arctic Amerasian continental shelf sediments,
 Int. J. Earth Sci., 89, 522–532, 2000.
- 1329 Niessen, F., Hong, J. K., Hegewald, A., Matthiessen, J., Stein, R., Kim, H., Kim, S., Jensen, L.,
- 1330 Jokat, W., Nam, S.-I., and Kang, S.-H.: Repeated Pleistocene glaciation of the East
- 1331 Siberian Continental Margin, Nat. Geosci., 6, 842-846, 2013.
- 1332 Niewohner, C., Hensen, C., Kasten, S., Zabel, M., and Schulz, H. D.: Deep sulfate reduction
- completely mediated by anaerobic methane oxidation in sediments of the upwelling area
 off Namibia, Geochim. Cosmochim. Ac., 62, 455–464, 1998.
- Nöthen, K. and Kasten, S.: Reconstructing changes in seep activity by means of pore water and
 solid phase Sr/Ca and Mg/Ca ratios in pockmark sediments of the Northern Congo Fan,
- 1337 Mar. Geol., 287, 1-13, 2011.
- 1338 O'Regan, M., Williams, C. J., Frey, K. E., Jakobsson, M.: A synthesis of the long-term
- paleoclimatic evolution of the Arctic. Oceanography 24(3), 66–80, 2011

1340	O'Regan, M., Preto, P., Stranne, C., Jakobsson, M., and Koshurnikov, A.: Surface heat flow
1341	measurements from the East Siberian continental slope and southern Lomonosov Ridge,
1342	Arctic Ocean, Geochem. Geophy. Geosy., 17, 1-15, 2016.
1343	Ostanin, I., Anka, Z., di Primio, R. and Bernal, A.: Hydrocarbon plumbing systems above the
1344	Snøhvit gas field: structural control and implications for thermogenic methane leakage in
1345	the Hammerfest Basin, SW Barents Sea. Marine and Petroleum Geology, 43, 127-146,
1346	2013.
1347	Party, S. S.: Integrated Ocean Drilling Program Expedition 303 Preliminary Report North
1348	Atlantic Climate Ice sheet-ocean atmosphere interactions on millennial timescales during
1349	the late Neogene-Quaternary using a paleointensity-assisted chronology for the North
1350	Atlantic, 1-51, 2005.
1351	Paull, C. K., Ussler, W. III, and Dillon, W. P.: Is the extent of glaciation limited by marine gas-
1352	hydrates?, Geophys. Res. Lett., 18 432-434, 1991.
1353	Paull, C. K., Matsumoto, R., Wallace, P. J., and Shipboard Scientific Party: Proceedings of the
1354	IODP, Initial Reports. Volume 164: College Station, TX, USA, 1996.
1355	Paull, C. K, Lorenson, T. D., Borowski, W. S., Ussler, III W., Olsen, K., and Rodriguez, N. M.:
1356	Isotopic composition of CH4, CO2 species, and sedimentary organic matter within
1357	samples from the Blake Ridge: gas source implications, In: Paull C. K., Matsumoto, R,
1358	Wallace, P. J., and Dillon, W. P., (Eds) Proceedings of the ODP, Sci. Res., Vol. 164 67-
1359	78, (ODP), 2000.
1360	Pecher, I. A., Kukowski, N., Huebscher, C., Greinert, J., and Bialas, J.: The link between bottom-
1361	simulating reflections and methane flux into the gas hydrate stability zone - new evidence
1362	from Lima Basin, Peru Margin, Earth Planet. Sc. Lett., 185, 343-354, 2001.

1363	Peterson, B. J., Holmes, R. M., McClelland, J. W., Vorosmarty, C. J., Lammers, R. B.,
1364	Shiklomanov, A. I., Shiklomanov, I. A., and Rahmstorf, S.: Increasing river discharge to
1365	the Arctic Ocean, Science, 298, 2171–2173, 2002.
1366	Petersen, C. J., Bünz, S., Hustoft, S., Mienert, J., and Klaeschen, D.: High-resolution P-Cable 3D
1367	seismic imaging of gas chimney structures in gas hydrated sediments of an Arctic
1368	sediment drift, Mar. Petrol. Geol., 1–14, 2010.
1369	Phrampus, B. J., Hornbach, M. J., Ruppel, C. D., and Hart P. E.: Widespread gas hydrate
1370	instability on the upper US Beaufort margin, J. Geophys. Res-Sol. Ea., 119, 8594-8609,
1371	2014
1372	Piñero, E., Marquardt, M., Hensen, C., Haeckel, M., and Wallmann K.: Estimation of the global
1373	inventory of methane hydrates in marine sediments using transfer functions,
1374	Biogeosciences 10, 959–975, 2013.
1375	Pohlman, J. W., Riedel, M., Waite, W., Rose, K., and Lapham, L.: Application of Rhizon
1376	samplers to obtain high-resolution pore-fluid records during geo-chemical investigations
1377	of gas hydrate systems, Fire in the Ice: Methane Hydrate Newsletter, US Department of
1378	Energy/National Energy Technology Laboratory, Fall, 2008.
1379	Posewang, J. and Mienert, J.: High-resolution seismic studies of gas hydrates west of Svalbard,
1380	Geo-Mar. Lett., 19, 150–156, 1999.
1381	Prell, W. L., Niitsuma, N., and Shipboard Scientific Party: Proceedings of the Ocean Drilling
1382	Program, Initial Reports, 117: College Station, TX (Ocean Drilling Program), 1998.
1383	Rachor, E.: The expedition ARK-XI/1 of RV" Polarstern" in 1995: [ARK XI/1, Bremerhaven-
1384	Tromsø-, 07.07. 1995-20.09. 1995]. Berichte zur Polarforschung (Reports on Polar
1385	Research), 226, 1995.

61

- 1386 Reagan, M. T. and Moridis, G. J.: Dynamic response of oceanic hydrate deposits to ocean
- temperature change, J. Geophys. Res., 113, 1-21, 2008.
- 1388 Reagan, M. T. and Moridis, G. J.: Large-scale simulation of methane hydrate dissociation along
- the West Spitsbergen margin, Geophys. Res. Lett., 36, 1-5, 2009.
- 1390 Redfield, A. C.: The biological control of chemical factors in the environment, Am. Sci., 46,
- 1391 221-230, 1958.
- 1392 Regnier, P., Dale, A. W., Arndt, S., LaRowe, D. E., Mogollón, J., and Van Cappellen, P.:
- Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: a
 modeling perspective, Earth-Sci. Rev., 106, 105-130, 2011.
- 1395 Reeburgh, W. S.: Methane consumption in Cariaco Trench waters and sediments, Earth Planet
- 1396 Sci. Lett., 28, 337–344, 1976.
- 1397 Riedel, M., Collett, T.S., Malone, M.J., and the Expedition 311 Scientists Proceedings of the
- 1398Integrated Ocean Drilling Program, Volume 311, 2006.
- Riedinger, N., Kasten, S., Gröger, J., Franke, C. and Pfeifer, K.: Active and buried authigenic
 barite fronts in sediments from the Eastern Cape Basin, Earth Planet. Sc. Lett., 241, 876887, 2006.
- 1402 Riedinger, N., Formolo, M. J., Lyons, T. W., Henkel, S., Beck, A., and Kasten, S.: An inorganic
- geochemical argument for coupled anaerobic oxidation of methane and iron reduction in
 marine sediments, Geobiology, 12, 172-181, 2014.
- 1405 Rudels, B., Muench, R. D., Gunn, J., Schauer, U., and Friedrich, H. J.: Evolution of the Arctic
- Ocean boundary current north of the Siberian shelves, Journal of Marine Systems, 25, 1,
 77-99, 2000.

- 1408 Ryan, W. B. F., Carbotte, S. M., Coplan, J. O., O'Hara, S., Melkonian, A., Arko, R., Weissel, R.
- 1409 A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., and Zemsky, R.: Global
- 1410 Multi-Resolution Topography synthesis, Geochem. Geophys. Geosyst., 10, 1-9, 2009.
- 1411 Sander, B. C. and Kalff, J.: Factors controlling bacterial production in marine and freshwater
- 1412 sediments, Microb. Ecol., 26, 79-99, 1993.
- 1413 Sauvage, J.: Dissolved Inorganic Carbon and Alkalinity in Marine Sedimentary Interstitial
- 1414 Water, Master Thesis, University of Rhode Island, 2013.
- Schrum, H. S., Murray, R. S., and Gribsholt B.: Comparison of rhizon sampling and whole round
 squeezing for marine sediment porewater, Sci. Drill., 13, 47–50, 2012.
- 1417 Schulz, H. D.: Quantification of early diagenesis: dissolved constituents in marine pore water, In

1418 Mar. Geochem., Springer Berlin Heidelberg, 85-128, 2000.

- 1419 Seeberg-Elverfeldt, J., Schlüter, M., Feseker, T., and Kölling, M.: Rhizon sampling of pore
- waters near the sediment/water interface of aquatic systems, Limnol. Oceanogr. Methods,3, 361-371, 2005.
- 1422 Seifert, R. and Michaelis, W.: Organic compounds in sediments and pore waters of Sites 723 and

1423 724, In Prell, W.L., Niitsuma, N., et al., Proc. ODP, Sci. Results, 117: College Station,
1424 TX (ODP), 529–545, 1991.

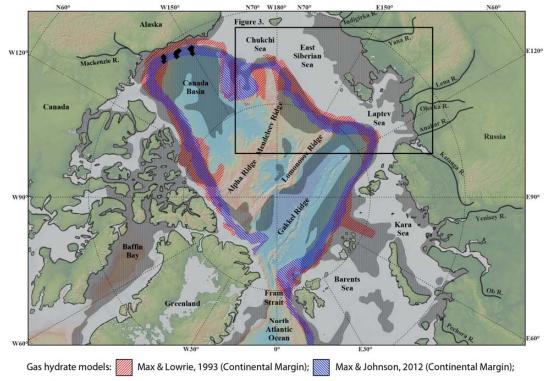
- 1425 Serreze, M. C., Walsh, J. E., Chapin, III F. S., Osterkamp, T., Dyurgerov, M., Romanovsky, V.,
- 1426 Oechel, W. C., Morison, J., Zhang T., and Barry, R. B.: Observational evidence of recent
- 1427 change in the northern high-latitude environment, Climatic Change, 46, 159–207, 2000.
- Semiletov, I., Makshtas, O. A., Akasofu, S.I., and Andreas, E. L.: Atmospheric CO2 balance: the
 role of Arctic sea ice, Geophys. Res. Lett., 31, 1-4, 2004.

1430	Shakhova, N, Semiletov, I, Salyuk, A, Yusupov, V, Kosmach, D, and Gustafsson, Ö.: Extensive
1431	Methane venting to the atmosphere from sediments of the East Siberian arctic shelf,
1432	Science, 327, 1246–1250, 2010a.
1433	Shakhova, N., Semiletov, I., Leifer, I., Rekant, P., Salyuk, A., and Kosmach, D.: Geochemical
1434	and geophysical evidence of methane release from the inner East Siberian Shelf, J.
1435	Geophys. Res., 115, 1-14, 2010b.
1436	Sher, A. V., Kuzmina, S. A., Kuznetsova, T. V., and Sulerzhitsky, L. D.: New insights into the
1437	Weichselian environment and climate of the East Siberian Arctic, derived from fossil
1438	insects, plants, and mammals, Quaternary Sci. Rev., 24, 533 - 569, 2005.
1439	Shipboard Scientific Party: Leg 201 summary, In D'Hondt, S.L., Jørgensen, B.B., Miller, D.J., et
1440	al., Proc. ODP, Init. Repts., 201: College Station TX (Ocean Drilling Program), 1-81,
1441	2003.
1442	Smith, J. P. and Coffin, R. B.: Methane Flux and Authigenic Carbonate in Shallow Sediments
1443	Overlying Methane Hydrate Bearing Strata in Alaminos Canyon, Gulf of Mexico,
1444	Energies, 7, 6118-6141, 2014.
1445	Snyder, G. T., Hiruta, A., Matsumoto, R., Dickens, G. R., Tomaru, H., Takeuchi, R.,
1446	Komatsubara, J., Ishida, Y., and Yu, H.: Porewater profiles and authigenic mineralization
1447	in shallow marine sediments above the methane-charged system on Umitaka Spur, Japan
1448	Sea. Deep-Sea Research II 54, 1216–1239, 2007.
1449	Soloviev, V. A.: Gas-hydrate-prone areas of the ocean and gas-hydrate accumulations, Journal of
1450	the Conference Abstracts, 6, 158, 2002.

- 1451 Spielhagen, R. F., Werner, K., Sorensen, S. A., Zamelczyk, K., Kandiano, E., Budeus, G.,
- 1452 Husum, K., Marchitto, T. M., and Hald, M.: Enhanced modern heat transfer to the Arctic
- 1453 by warm Atlantic water, Science 331, 450-453, 2011.
- 1454 Stein, R., Boucsein, B., and Meyer, H.: Anoxia and high primary production in the Paleogene
- 1455 central Arctic Ocean: First detailed records from Lomonosov Ridge, Geophys. Res. Lett.,
- **1456 33**, 1-6, 2006.
- Stein, R.: Arctic Ocean sediments: processes, proxies, and paleoenvironment, Developments in
 Mar. Geol., 2. Elsevier, Amsterdam. 592 pp., 2008.
- 1459 Stranne, C., O'Regan, M., Dickens, G. R., Crill, P., Miller, C., Preto, P., and Jakobsson, M.:
- Dynamic simulations of potential methane release from East Siberian continental slopesediments, Geochem. Geophy. Geosy., 17, 872-886, 2016.
- 1462 Stroeve, J. C., Serreze, M. C., Holland, M. M., Kay, J. E., Malanik, J., and Barrett, A. P.: The
- Arctic's rapidly shrinking sea ice cover: a research synthesis, Climatic Change, 110,
 1005-1027, 2012.
- 1465 Suess, E., von Huene, R., and Shipboard Scientific Party: Proceedings of the Ocean Drilling
- 1466Program, Initial Reports, 112: College Station, TX (Ocean Drilling Program), 1988.
- Takahashi, T. Broecker, V. S., and Langer, S.: Redfield ratio based on chemical data from
 isopycnal surfaces, J. Geophys. Res-Oceans, 90, 6907-6924, 1985.
- 1469 Takahashi, K., Ravelo, A.C., Alvarez Zarikian, C.A., and the Expedition 323 Scientists
- 1470 Proceedings of the Integrated Ocean Drilling Program, Volume 323, 2011.
- 1471 Tamaki, K., Pisciotto, K., Allan, J., and Shipboard Scientific Party: Proceedings of the Ocean
- 1472 Drilling Program, Initial Reports, Vol. 127, 1990.

- Thatcher, K. E., Westbrook, G. K., Sarkar, S., and Minshull, T. A.: Methane release from 1473
- 1474 warming-induced hydrate dissociation in the West Svalbard continental margin: Timing,
- 1475 rates, and geological controls, J. Geophys. Res-Sol. Ea., 118, 22-38, 2013.
- Timokhov L. A.: Regional characteristics of the Laptev and the East Siberian seas: climate, 1476
- topography, ice phases, thermohaline regime, and circulation, In: Russian-German 1477
- cooperation in the Siberian Shelf seas: geo-system Laptev Sea, H. Kassens, H. W. 1478
- 1479 Hubberten, S. Priamikov and R. Stein, editors. Berichte zur Polarforschung, 144, 15-31, 1994. 1480
- Torres, M. E., Kastner, M., Wortmann, U. G., Colwell, F., and Kim, J.: Estimates of methane 1481
- 1482 production rates based on $\delta 13C$ of the residual DIC in pore fluids from the Cascadia margin, EOS, 8(52), Fall Meet. Suppl., Abstract GC14A04, 2007. 1483
- 1484 Torres, M. E. and Kastner M.: Data report: Clues about carbon cycling in methane-bearing sediments using stable isotopes of the dissolved inorganic carbon, IODP Expedition 311. 1485 1486
- Proceedings of the IODP, 311, 2009.
- Treude, T., Krause, S., Maltby, J., Dale, A.W., Coffin, R. and Hamdan, L.J.: Sulfate reduction 1487
- 1488 and methane oxidation activity below the sulfate-methane transition zone in Alaskan
- Beaufort Sea continental margin sediments: Implications for deep sulfur cycling. 1489
- Geochimica et Cosmochimica Acta, 144, 217-237, 2014 1490
- 1491 Troup, B. N., Bricker, O. P., and Bray, J. T.: Oxidation effect on the analysis of iron in the
- interstitial water of recent anoxic sediments, Nature 249, 237-239, 1974. 1492
- Ussler, W. and Paull, C.K.: Rates of anaerobic oxidation of methane and authigenic carbonate 1493
- 1494 mineralization in methane-rich deep-sea sediments inferred from models and
- geochemical profiles. Earth and Planetary Science Letters, 266(3), 271-287, 2008. 1495

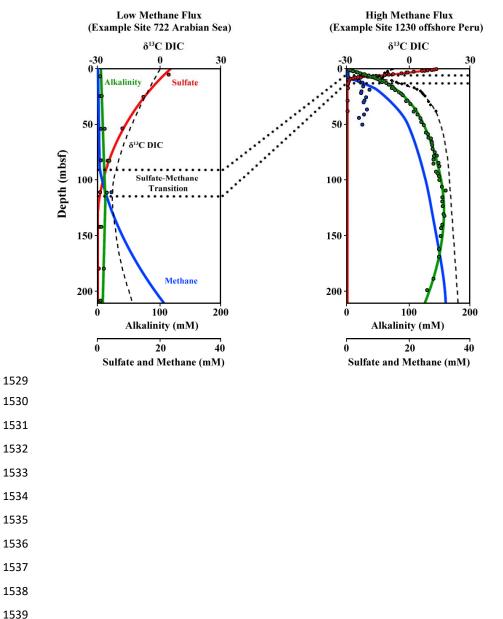
- 1496 Vanneste, M., Guidard, S., and Mienert, J.: Bottom-simulating reflections and geothermal
- 1497 gradients across the western Svalbard margin, Terra Nova, 17, 510–516, 2005.
- 1498 Wallmann, K., Pinero, E., Burwicz, E., Haeckel, M., Hensen, C., Dale, A. W., and Ruepke, L.:
- The global inventory of methane hydrate in marine sediments: A theoretical approach,
 Energies, 5, 2449–2498, 2012.
- 1501 Wang, G., Spivack, A. J., and D'Hondt, S.: Gibbs energies of reaction and microbial mutualism
- in anaerobic deep subseafloor sediments of ODP Site 1226, Geochim. Cosmochim. Ac.,
 74, 3938-3947, 2010.
- 1504 Weaver, J. S. and Stewart, J. M.: In-situ hydrates under the Beaufort Sea Shelf, In: M.H. French
- (Editor), Proceedings of the Fourth Canadian Permafrost Conference 1981, Roger J. E.
 Brown Memorial Volume, Nat. Res. Council Can., Ottawa, Ont., 312-319, 1982.
- Wefer, G., Berger, W. H., Richter, C., and Shipboard Scientific Party: Proceedings of the Ocean
 Drilling Program, Initial Reports, 175: College Station, TX (Ocean Drilling Program),
 1509 1998.
- 1510 Woodgate R. A., Aaagard, K., Muench, R. D., Gunn, J., Björk, G., Rudels, B., Roach, A. T., and
- 1511 Schauer, U.: The Arctic Ocean boundary current along the Eurasian slope and the
- adjacent Lomonosov Ridge: Water mass properties, transports and transformation from
- 1513 moored instruments, Deep Sea Research, 48, 1757-1792, 2001.
- 1514 Yamamoto, K. and Dallimore, S.: Aurora-JOGMEC-NRCan Mallik 2006–2008 Gas Hydrate
- 1515 Research Project progress. In: Fire in the Ice, NETL Methane Hydrate Newsletter,
- 1516 Summer 2008, 1–5, 2008.



1517	Ye, H., Yang, T., Zhu, G., Jiang, S., and Wu, L.: Pore water geochemistry in shallow sediments
1518	from the northeastern continental slope of the South China Sea, Mar. Petrol. Geol., 75,
1519	68-82, 2016.
1520	Yoshinaga, M. Y., Holler, T., Goldhammer, T., Wegener, G., Pohlman, J. W., Brunner, B.,
1521	Kuypers, M. M., Hinrichs, K. U. and Elvert, M.: Carbon isotope equilibration during
1522	sulphate-limited anaerobic oxidation of methane. Nature Geoscience, 7(3), 190-194,
1523	2014.
1524	

- 1525 Figures
- 1526 **Figure 1.**

Soloviev, 2002. Observed SMT (\blacklozenge ; Coffin, et al., 2013) locations.


1527

&

1528 Figure 2.

Idealized Pore Water Concentration Profiles

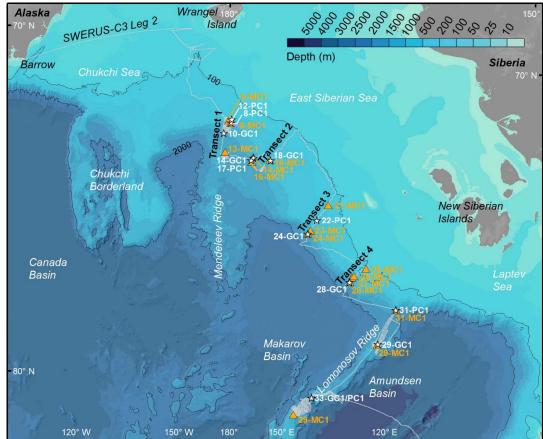
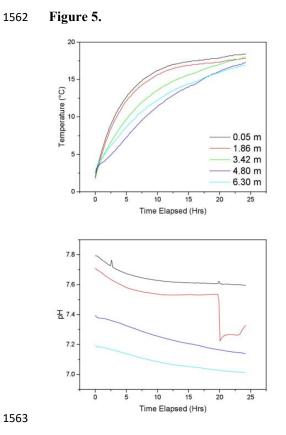

1540 1541

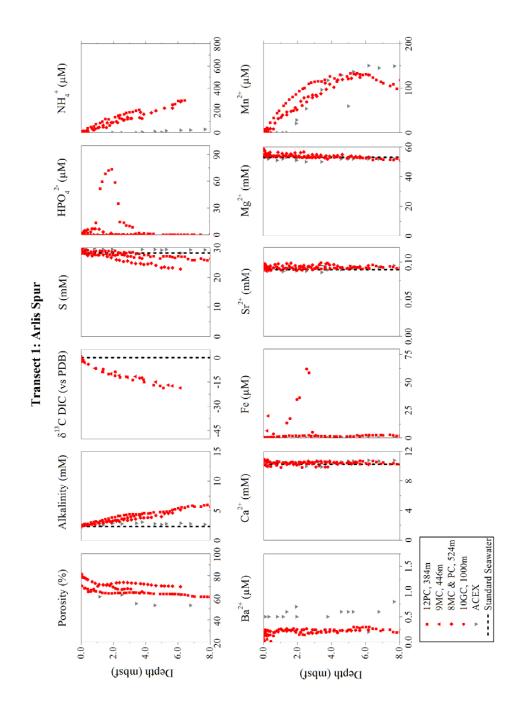
Figure 3.

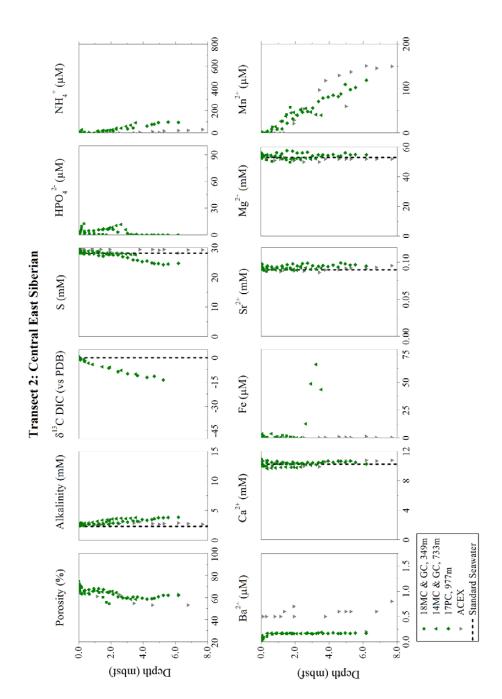
1555 **Figure 4.**

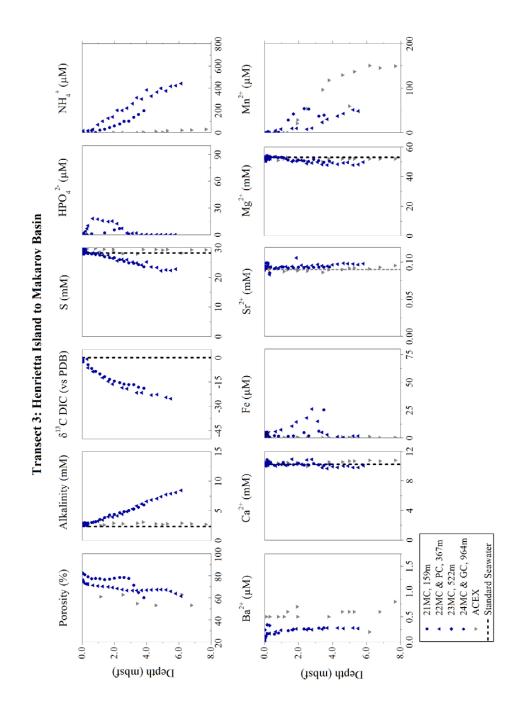
(a.)

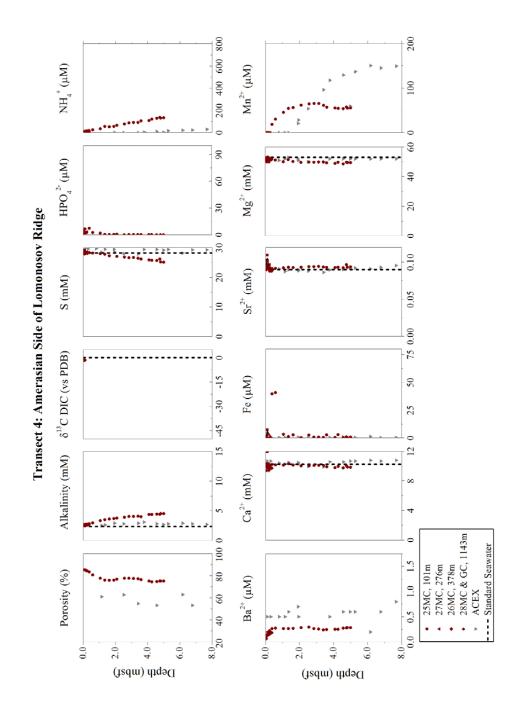

(b.)

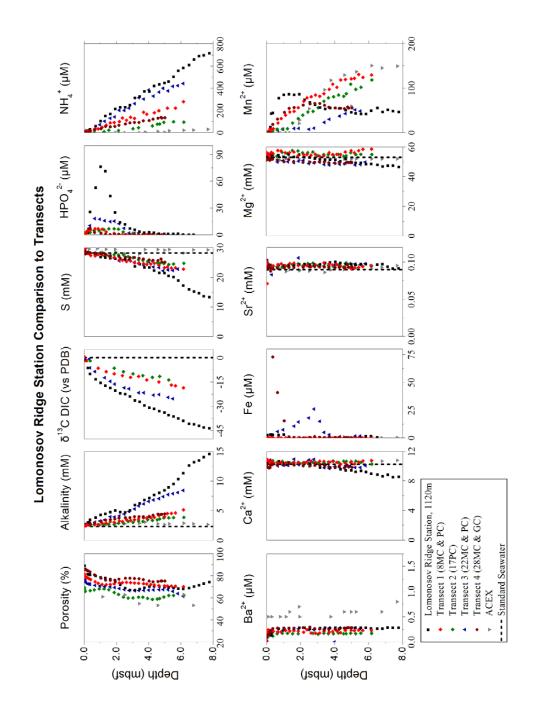
- 1556
- 1557
- 1558
- 1559
- 1560
- 1561

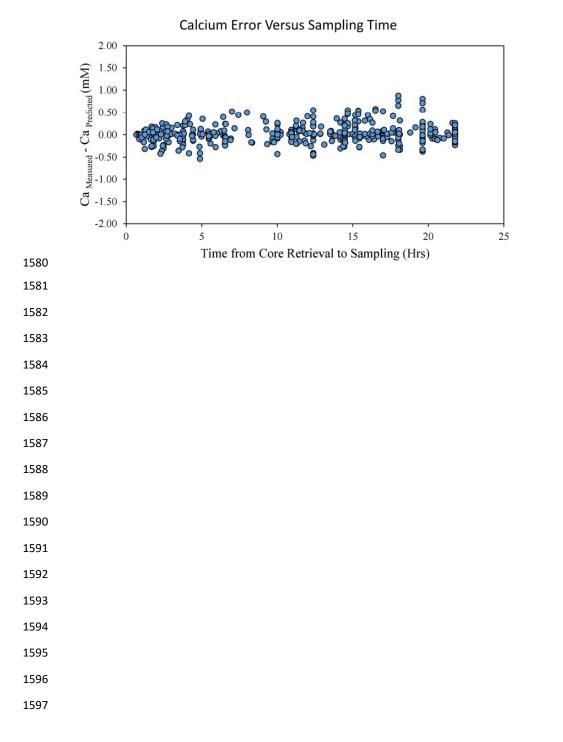


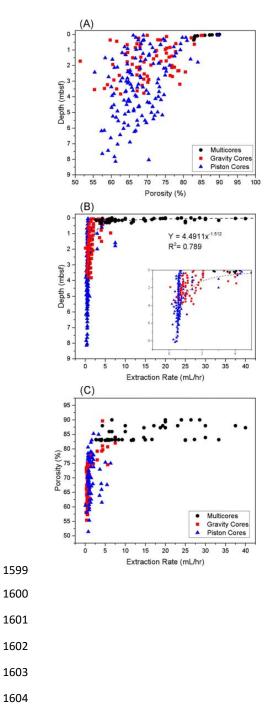

Figure 6.

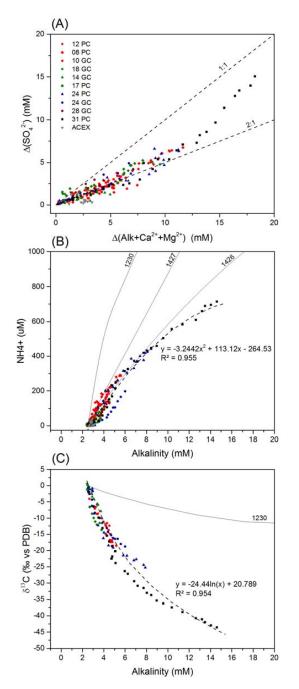

1567 Figure 7.

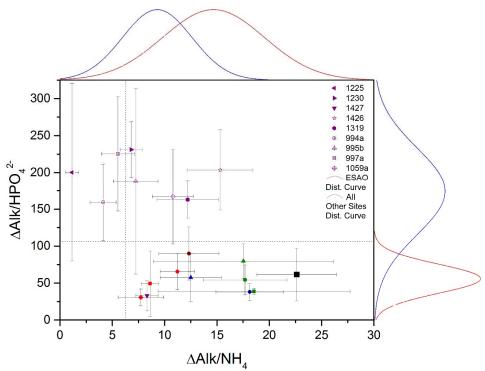

Figure 8.


Figure 9.

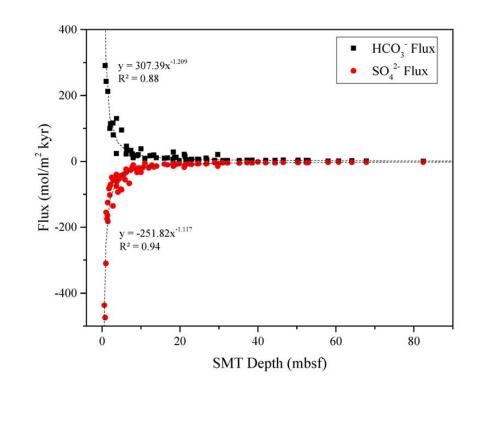

Figure 10.


1579 Figure 11.

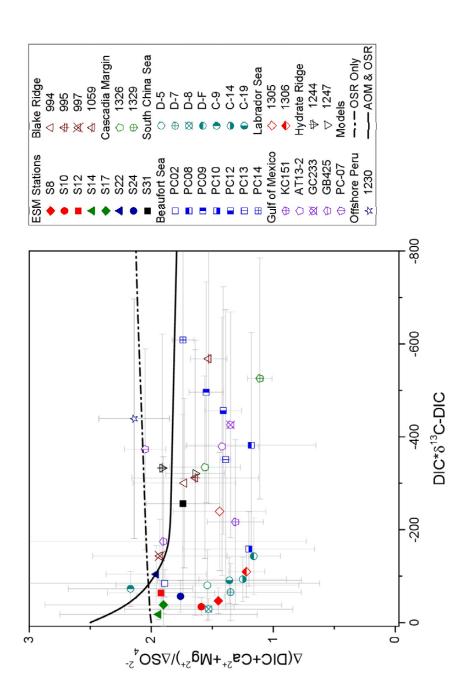

1598 Figure 12.

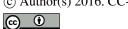

1605 Figure 13.

1607 Figure 14.



Redfield Comparison with Marginal Distribution Curves


1609 Figure 15.



1622 Figure 16.

Table 1 Rhizon Efficacy	on Efficacy								
Station	Loci	Location	Water Depth	Core Type	Core Length	Total Ti Coring to	Total Time from Coring to Sampling	Rhizon Extraction Time	action Time
	Lattitude	Longitude	(m)		(m)	Average (hrs)	Range (hrs)	Average (hrs)	Range (hrs)
8	75° 09' 11.4912" N	179° 52' 23.0952" E	524	MC	0.16	0.92	(0.57 - 1.15)	0.47	(0.08 - 1.21)
6	75° 03' 24.2166" N	179° 49' 13.497" W	946	MC	0.29	1.13	(0.87 - 1.26)	0.91	(0.19 - 1.47)
13	76° 11' 10.7772" N	179° 16' 42.102" W	1118	MC	0.17	1.40	(1.20 - 1.68)	0.40	(0.20 - 0.68)
14	76° 21' 10.3926" N	176° 27' 39.9954" E	733	MC	0.20	2.51	(0.83 - 4.42)	1.76	(0.08 - 3.67)
16	76° 30' 43.2540" N	176° 37' 55.1670" E	1023	MC	0.21	2.81	(1.87 - 3.70)	1.44	(0.51 - 2.33)
18	76° 24' 32.8680" N)" N 173° 52' 44.9178" E	349	MC	0.33	2.11	(1.32 - 2.68)	1.21	(0.42 - 1.78)
21	77° 34' 56.4918" N	77° 34' 56.4918" N 163° 17' 36.7326" E		MC	0.24	4.02	(3.45 - 4.37)	0.73	(0.17 - 1.08)
22	78° 13' 25.9572" N	2" N 164° 25' 36.3612" E	367	MC	0.32	0.73	(0.68 - 0.75)	0.38	(0.33 - 0.41)
23	78° 39' 51.7206" N	78° 39' 51.7206" N 165° 01' 57.8352" E		MC	0.32	1.48	(0.67 - 1.93)	1.24	(0.35 - 1.85)
24	78° 48' 00.1080" N	78° 48' 00.1080" N 165° 22' 55.8552" E	982	MC	0.32	1.79	(0.85 - 2.18)	1.34	(0.52 - 1.67)
25	79° 13' 34.6362" N	79° 13' 34.6362" N 152° 40' 32.2284" E		MC	0.25	0.97	(0.83 - 1.17)	0.63	(0.51 - 0.83)
26	79° 44' 31.6782" N	79° 44' 31.6782" N 154° 23' 20.3244" E	378	MC	0.37	1.83	(0.80 - 2.80)	1.53	(0.50 - 2.51)
27	79° 39' 52.6824" N	154° 07' 34.5324" E	276	MC	0.26	1.65	(1.35 - 2.18)	1.30	(1.01 - 1.83)
28	79° 55' 10.3584" N	79° 55' 10.3584" N 154° 21' 12.7578" E	1145	MC	0.27	1.53	(0.85 - 2.27)	1.10	(0.42 - 1.83)
29	81° 20' 33.9750" N	141° 46' 31.6668" E	668	MC	0.23	1.55	(1.05 - 2.05)	1.17	(0.67 - 1.67)
31	79° 55' 13.4070" N	143° 09' 53.0994" E	1157	MC	0.39	2.38	(1.80 - 3.38)	2.08	(1.50 - 3.08)
32	85° 08' 28.2582" N	151° 35' 24.5220" E	837	MC	0.33	4.38	(2.38 - 5.05)	3.33	(1.33 - 4.01)
Multicore Av	Multicore Average and Range				0.27	1.95	(0.57 - 5.05)	1.24	(0.08 - 4.01)
8	75° 08' 06.3342" N	179° 51' 05.9004" E	515	PC	6.42	18.56	(4.81 - 20.85)	15.22	(1.78 - 17.5)
10	75° 30' 12.6462" N	179° 05' 59.265" W	1000	GC	3.99	11.01	(3.38 - 12.38)	10.31	(1.83 - 11.83)
12	75° 00' 57.3114" N	179° 45' 09.9900" E	384	PC	8.43	21.44	(20.27 - 21.77)	17.95	(16.42 - 19.15)
14	76° 22' 04.9146" N	176° 25' 56.9670" E		GC	2.75	14.58	(6.55 - 17.11)	9.00	(5.22 - 10.01)
17	76° 27' 52.6248" N	176° 43' 25.7628" E	977	PC	6.37	19.62	(18.12 - 19.62)	16.58	(15.08 - 16.58)
18	76° 24' 41.7240" N	173° 47' 17.6454" E	351	GC	1.95	7.72	(3.02 - 14.37)	6.40	(1.73 - 12.92)
22	78° 13' 22.5336" N	164° 27' 42.6306" E	364	PC	6.45	19.79	(13.5 - 25.17)	17.71	(11.42 - 23.08)
24	78° 47' 48.9186" N	165° 21' 59.5080" E	964	GC	4.05	12.25	(10.94 - 14.19)	5.89	(4.83 - 7.42)
28	79° 55' 28.0302" N	154° 23' 44.7180" E	1143	GC	5.23	12.78	(3.33 - 14.33)	6.98	(5.58 - 16.63)
29	81° 17' 57.6816" N	141° 46' 57.1794" E	824	GC	4.66	17.43	(9.25 - 18.02)	13.38	(4.72 - 14.12)
31	79° 54' 53.4270" N		_	PC	8.07	11.95	(3.90 - 18.07)	9.25	(1.33 - 15.50)
33	84° 16' 29.5422" N	148° 44' 07.1484" E		GC	3.59	12.20	(9.57 - 19.07)	8.55	(5.92 - 15.42)
33	84° 16' 55.3368" N	148° 38' 48.3102" E	888	PC	6.24	11.06	(7.55 - 17.88)	9.48	(5.82 - 16.25)
Gravity/Pisto	Gravity/Piston Core Average and]	and Range			5.25	14.65	(3.02 - 25.17)	11.28	(1.33 - 23.08)

Station	Flow Rate (mL/hr) Flow Rate Decr per meter			
	Average	Min	Max	(mL/hr/m)
8	25.28	8.33	37.50	243.06
9	11.36	5.16	26.82	59.21
13	23.68	14.63	33.33	70.36
14	8.31	0.55	24.00	130.30
16	8.31	0.55	24.00	79.37
18	10.77	3.93	26.40	70.23
21	13.00	2.77	40.00	201.71
22	26.82	25.00	30.00	18.52
23	13.52	5.41	28.57	77.22
24	9.51	6.00	19.35	49.46
25	16.24	12.00	20.00	36.36
26	8.85	4.00	20.00	49.23
27	8.09	5.45	10.00	21.65
28	11.80	5.45	24.00	74.18
29	10.36	6.00	16.50	58.33
31	5.16	3.24	6.67	10.07
32	5.21	3.75	11.25	23.44
Multicore Average	12.72	6.60	23.43	74.86
8	1.13	0.29	5.61	0.84
10	1.35	0.38	5.45	1.33
12	0.53	0.17	0.67	0.04
14	1.19	1.00	1.92	0.14
17	0.61	0.36	0.73	0.02
18	2.76	0.08	6.35	2.83
22	0.59	0.22	0.88	0.11
24	1.71	1.25	2.07	0.20
28	1.74	0.70	3.00	0.70
29	0.80	0.64	2.12	0.35
31	2.03	0.65	7.50	0.19
33	1.26	0.65	1.69	0.14
33	1.11	0.62	1.69	0.13
Gravity/Piston Core Average	1.29	0.54	3.05	0.54

Table 2 Rhizon Flow Rates

1625

1626

Analysis	Sample Type	Number	Result
Alkalinity	Spiked	15	PE = 1.53%
Alkalinity	Duplicate	8	PD = 1.30%
δ^{13} C-DIC	Seawater Standard	2	0.23‰ and 0.32‰
δ ¹³ C-DIC	Blind Field Duplicate	4	PD = 22.98%
δ ¹³ C-DIC	Field Blank	1	No Result
δ^{13} C-DIC	Duplicate	10	PD = 14.70%
Metals	Spiked	51	RSD = 2.55% (Ba), 2.17% (Ca),
			1.53% (Fe), 0.77% (Mg), 1.73%
			(Mn), 1.88% (S), and 1.42% (Sr)
Metals	Blind Field Duplicate	11	PD = 2.56% (Ba), 3.77% (Ca),
			5.81% (Fe), 2.68% (Mg), 3.07%
			(Mn), 0.71% (S), and 3.79% (Sr)
Metals	Field Blank	2	BDL
Phosphate	VKI Standard	2	PE = 1.28% and 2.69%
Ammonia	VKI Standard	2	PE = 2.40% and $6.25%$

Table 3 QA/QC Results

Notes: PE = Percent Error

PD = Percent Difference

RSD = Relative Standard Deviation

BDL = Below Detection Limit

1628

1629

1630

1631

1632

1633

1634

1635

1636

Ocean	Location	Water Depth (m)	SMT Depth (mbsf)	SO4 ²⁻ Flux (mol/m ² kyr)	Alkalinity Flux (mol/m ² kyr)	δ ¹³ C at SMT (‰)
Arctic	Beaufort Sea - Cape Halkett ^{a,b}	280	1.06	-154.8	242.6	-21.5
Arctic	Beaufort Sea - Cape Halkett ^{a,b}	342	1.47	-124.7	212.3	-20.2
Arctic	Beaufort Sea - Cape Halkett ^{a,b}	1005	3.73	-44.2	130.3	-18.2
Arctic	Beaufort Sea - Cape Halkett ^{a,b}	1458	6.29	-27.4	46.3	-19.7
Arctic	East Siberian Slope	349	61	-1.8	1.7	
Arctic	East Siberian Slope	367	25	-6.9	6.3	
Arctic	East Siberian Slope	384	64	-2.4	2.3	
Arctic	East Siberian Slope	524	35	-5.6	2.8	
Arctic	East Siberian Slope	733	58	-2.1	1.5	
Arctic	East Siberian Slope	977	58	-2.1	1.6	
Arctic	East Siberian Slope	964	23	-9.2	6.8	
Arctic	East Siberian Slope	1000	52	-3.3	3.3	
Arctic	East Siberian Slope	1143	44	-5.1	3.5	
Arctic	East Siberian Slope	1120	14	-13.9	11.3	
Atlantic	New Jersey Continental Slope ^{q,i}	912	28.9	-3.3	3.6‡	
Atlantic	Blake Ridge ^{q,p}	1293	50.3	-3.4	3.8‡	
Atlantic	Blake Ridge ^{q,p}	1798	26.9	-6.6	4.9 [‡]	
Atlantic	Blake Ridge ^{q,x}	2567	42.0	-3.8	3.5‡	
Atlantic	Blake Ridge ^{q,x}	2641	24.5	-7.6	6.9 [‡]	
Atlantic	Blake Ridge ^{q,x}	2777	21.7	-8.3	5.4‡	
Atlantic	Blake Ridge ^{q,x}	2770	22.5	-7.8	4.7 [‡]	
Atlantic	Blake Ridge ^{q,x}	2798	21.5	-8.7	4.4‡	
Atlantic	Blake Ridge ^{q,p}	2985	9.3	-20.0	20.4 [‡]	
Atlantic	Blake Ridge ^{q,p}	3481	12.3	-17.1	17.0 [‡]	
Atlantic	Blake Ridge ^{q,p}	4040	16.8	-10.5	10.8 [‡]	
Atlantic	Gulf of Mexico - Keathley Canyon ^w	1300	9	-33‡	17 [‡]	-49.6
Atlantic	Gulf of Mexico - Atwater Valley ^w	1300	0.1	-2901		
Atlantic	Gulf of Mexico - Atwater Valley ^w	1300	0.1	-2901		
Atlantic	Gulf of Mexico - Atwater Valley ^w	1300	0.6	-437		
Atlantic	Gulf of Mexico - Atwater Valley ^w	1300	7	-67		-46.3
Atlantic	Amazon Fan ^{q,v,y}	3191	37.2	-3.2	4.1‡	-39.8
Atlantic	Amazon Fan ^{q,v,y}	3474	6.2	-24.6	22.7‡	-47.5
Atlantic	Amazon Fan ^{q,v,y}	3704	3.7	-40.3	24.3‡	-49.6
Atlantic	Western Africa ^{q,z}	426	12.8	-12.5	18.2‡	
Atlantic	Western Africa ^{q,z}	738	52.9	-3.1	2.9 [‡]	
Atlantic	Western Africa ^{q,z}	1280	21.3	-12.0	15.6 [‡]	-19.8
Atlantic	Western Africa ^{q,z}	1402	18.3	-14.9	28.3 [‡]	

Table 4 - Reported and Calculated Fluxes

Atlantic	Western Africaq,z	1713	38.5	-5.1	4.1‡	
Atlantic	Western Africaq,z	2179	26.7	-7.8	10.4‡	
Atlantic	Western Africaq,z	2382	21.1	-18.1	21.8‡	
Atlantic	Western Africaq,z	2995	29.7	-14.9	20.9‡	
Atlantic	Argentine Basin ¹	1228	10.5	-19.1		
Atlantic	Argentine Basin ¹	1492	12	-20.2		
Atlantic	Argentine Basin ¹	1568	4.9	-84.6		
Atlantic	Argentine Basin ¹	1789	5.9	-55.6		
Atlantic	Argentine Basin ¹	3247	10	-21.8		
Atlantic	Argentine Basin ¹	3167	14	-14.7		
Atlantic	Argentine Basin ¹	3542	3.7	-75.4		
Atlantic	Argentine Basin ¹	3551	5.6	-39.9		
Atlantic	Argentine Basin ¹	3551	4.1	-93.3		
Atlantic	Argentine Basin ¹	3623	5	-43.1		
Atlantic	Argentine Basin ¹	4280	5.1	-43.5		
Atlantic	Argentine Basin ¹	4799	12	-17.9		
Indian	Oman ^{q,1}	591	50.2	-2.2	1.1‡	
Indian	Oman ^{q,1}	804	46.5	-2.8	4.4 [‡]	
Indian	Oman ^{q,1}	1423	82.4	-1.8	0.8‡	
Pacific	Bering Sea ^{p,2}	1008	6.3	-32.8	37.8	-25.1
Pacific	Cascadia ^{q,u,2}	959	9.0	-23.6		-23.8
Pacific	Cascadia ^{q,u,2}	1322	7.9	-21.3		-30.8
Pacific	Cascadia ^{q,u,2}	1828	2.5	-49.0		-33.9
Pacific	Cascadia - Hydrate Ridgeº	834	8	-10.9	11.3	-19.6
Pacific	Cascadia - Hydrate Ridgeº	850	7.65	-22.3	23.2	-30.2
Pacific	Cascadia - Hydrate Ridgeº	871	7.4	-26.6	33.4	-24.9
Pacific	Cascadia - Hydrate Ridge ^g	896	7.8	-16	22	-22.5
Pacific	Umitaka Spur ^h	900	2.2	-71	114	
Pacific	Umitaka Spur ^h	947	2.9	-58	80	
Pacific	Umitaka Spur ^h	1034	2.0	-102	100	
Pacific	Japan Sea ^{s,4}	901	10	-33.6	38.4 [‡]	
Pacific	California Margin ^{9,5}	955	13.3	-17.3	19.6‡	
Pacific	California Margin ^{9,5}	1564	19.0	-9.3	12.8 [‡]	
Pacific	California Margin ^{9,5}	1926	31.0	-4.3	3.1‡	
Pacific	Nankai Trough ^{9,6}	1741	32.2	-4.9	3‡	
Pacific	Nankai Trough ^{s,6}	2997	11.0	-5.6	8.7‡	
Pacific	Nankai Trough ^{q,6}	3020	18.2	-7.0	6.4 [‡]	
Pacific	Santa Barbara ^k	587	1.3	-175.2		
Pacific	Soledad ^k	542	1	-310.3		

Biogeosciences Discussions

Pacific	Pescadero ^k	408	1.4	-164.3		
Pacific	Magdalena ^k	600	1.5	-182.5		
Pacific	Alfonso ^k	713	0.8	-474.5		
Pacific	Costa Rica Margin ^{q,7}	3306	16.0	-8.1	9.6 [‡]	
Pacific	Costa Rica Margin ^{q,7}	4177	19.8	-7.5	3.1‡	
Pacific	Costa Rica Margin ^{q,7}	4311	18.6	-12.3	12.4‡	
Pacific	Peru Margin ^{s,8}	161	30	-6.9		
Pacific	Peru Margin ^{t,9}	427	40	-1.2		-25.4
Pacific	Peru Margin ^{t,9}	5086	9	-25.0		-13.2
Pacific	Chilean Coast ^e	586	5.55	-22.9		
Pacific	Chilean Coast ^e	723	0.33	-362.0		
Pacific	Chilean Coast ^e	980	2.92	-45.3		
Pacific	Chilean Coast ^e	768	10.11	-13.3		
Pacific	New Zealand - Porangahau Ridge ^f	1900- 2150	12.8	-11.4		-31.4
Pacific	New Zealand - Porangahau Ridge ^f	1900- 2150	4.4	-53.3		-31.6
Pacific	New Zealand - Porangahau Ridge ^f	1900- 2150	3.6	-50.5		-31.4
Pacific	New Zealand - Porangahau Ridge ^f	1900- 2150	2.1	-74.2		-33.4
Pacific	New Zealand - Porangahau Ridge ^f	1900- 2150	3.8	-61.5		-35.0
Pacific	New Zealand - Porangahau Ridge ^f	1900- 2150	1.8	-82.6		-48.8
Pacific	New Zealand - Hikurangi ^{b,d}	350	39.5	5‡	7.3‡	
Pacific	New Zealand - Hikurangi ^{b,d}	332	12.9	19.3‡	13.6‡	
Pacific	New Zealand - Hikurangi ^{b,d}	98	0.87	192.1‡	160.9‡	
Pacific	New Zealand - Hikurangi ^{b,d}	285	3.64	65.2‡	59.6 [‡]	
Southern Ocean	Antarctic - Cumberland Bay ⁿ	237	5.03	-86	95	-25.4
Southern Ocean	Antarctic - Cumberland Bay ⁿ	260	0.80	-539	291	-23.5
Southern Ocean	Antarctic - Cumberland Bay ⁿ	275	2.80	-135	116	-15.5

1638

1639

1640

1641

1642

1644	Appendix	1.
------	----------	----

1645	These models follow Chatterjee et al., (2011) and Malinverno and Pohlman, (2011). The first
1646	model assumes the only sulfate reduction taking place is through OSR. Carbon fractionation
1647	through OSR is set at α = 1.01 from zero at the seafloor. Sulfate is completely consumed at 10m
1648	with a constant porosity of 70%. Diffusion is calculated by Equation 1 where the diffusivity in
1649	sediment is (Iverson and Jørgensen, 1993)
	$D_{S} = \frac{D_{0}}{(1 + n(1 - \varphi))} $ (9)
1650	Diffusion in seawater (D ₀) for sulfate is $0.56*10^{-5}$ cm ² /s (Iverson and Jørgensen, 1993) and
1651	$0.60*10^{-5}$ cm ² /s for bicarbonate (Li and Gregory, 1974). The saturation factor (<i>n</i>) was assumed to
1652	be 3 for clay/silt sediments, and the sedimentation rate was set at an arbitrary 25 cm/kyr. The
1653	conceptual framework for the second model is set to include both OSR and AOM. A SMT is set
1654	at five meters below the seafloor while sulfate reduction takes place at the surface. Carbon
1655	fractionation through AOM is set at α = 1.0175. Both downward diffusing sulfate and upward
1656	methane fluxes are set at 120 mol/m ² -kyr. The δ^{13} C-CH ₄ of the upward diffusing methane is set
1657	at -70‰, but an additional flux of DIC set at 20‰ is added from below the SMT.
1658	